Special Right Triangles

Review

Notes, Examples, Puzzle, and Practice Quiz (with Solutions)

**What is the area inside the green triangles?

Topics include 30-60-90, 45-45-90, Pythagorean Triples, and more.

Pythagorean Theorem

$$
a^{2}+b^{2}=c^{2}
$$

Utilizing the Pythagorean Theorem or Trig Identities can determine angle and side measurements of any right triangle. However, "Special Right Triangles" have features that make calculations easy!!

Special Right Triangles:

"Sides"

3

3-4-5
Right Triangle

Others include: $\begin{aligned} 5-12-13 \\ 7-24-25 \\ 8-15-17\end{aligned}$
 Hypotenuse

a
Trigonometry Relations

$$
\begin{array}{ll}
\sin \theta=\frac{b}{c} & \csc \theta=\frac{c}{b} \\
\cos \theta=\frac{\mathrm{a}}{\mathrm{c}} & \sec \theta=\frac{\mathrm{c}}{\mathrm{a}} \\
\tan \theta=\frac{\mathrm{b}}{\mathrm{a}} & \cot \theta=\frac{\mathrm{a}}{\mathrm{~b}}
\end{array}
$$

Note:
-- Pythagorean Theorem confirms

$$
3^{2}+4^{2}=5^{2}
$$

-- Any multiple of 3-4-5 will work!
Examples: $30-40-50$ or $15-20-25$
"Angles:

Note:
-- Pythagorean Theorem and trig relations confirm
(ex: $\sin 30^{\circ}=1 / 2=.5$)
-- Any ratio of $1-\sqrt{3}-2$ will work.
$\longrightarrow \mathrm{X}-\sqrt{3} \mathrm{X}-2 \mathrm{X}$

1

45-45-90
Right Triangle

Note:
-- Pythagorean theorem and trig relations confirm
-- Congruent sides imply congruent (opposite) angles
-- any ratio of 1-1- $\sqrt{2}$ will work.
$\longrightarrow \mathrm{X}-\mathrm{X}-\sqrt{2} \mathrm{X}$

Take the left half of an equilateral triangle...

using Pythagorean Theorem and, properties of triangles

Creating the 45-45-90 triangle...

Take half of a square...

Since one angle is 60 degrees, the other angle is 30 degrees.. (sum of interior angles of triangle $=180^{\circ}$) 30-60-90 right triangle...
Then, the small angle in the small triangle is 30 degrees. (vertical angles congruent)
So, another 30-60-90 right triangle.
In $30-60-90$ right triangle, the hypotenuse $=2($ small leg $)$

Small leg in big triangle is also 12 . (congruent segments)
Ratio of sides of 30-60-90 triangles ----> $x, x \sqrt{3}, 2 x$
Area of triangle: $\frac{1}{2}$ (base)(height) \quad small triangle: $18 \sqrt{3}$

$$
\text { large triangle: } \quad 72 \lambda \sqrt{3}
$$

$$
\text { Total green area: } 90 \sqrt{3} \approx 155.88
$$

Drop an altitude, creating another triangle....

30-60-90 right triangle: small side is $1 / 2$ of hypotenuse... therefore, side opposite 30 degree angle is $6 \ldots$

(supplementary angles) We know the left triangle is a 45-45-90 right triangle: hypotenuse is leg $\cdot \sqrt{2}$ therefore, $\mathrm{X}=6 \sqrt{2}$

Example: Here is a circle that is centered on the origin. If the radius is 10 and $\angle \mathrm{AOB}$ is 30°,
what is the coordinate of B ?
$(10,0)$
what is the coordinate of A ?

30-60-90 triangle

$$
\begin{aligned}
& \mathrm{AB}=5 \\
& \mathrm{OB}=5 \sqrt{3} \\
& \quad(5 \sqrt{3}, 5)
\end{aligned}
$$

Example: A giant Ferris Wheel is 80 feet in diameter and rotates 1 time every 3 minutes.
 The middle of the wheel is 45 feet above the ground.

Assuming a rider gets on and starts the ride at the bottom of the wheel, what is the rider's height
a) after 30 seconds
since diameter is 80 feet, the radius is 40 feet. Also, the middle of the wheel is 45 feet high.

After 30 seconds, the wheel has turned $1 / 6$ of the way $---->60$ degrees

b) after 2 minutes

After 2 minutes, the wheel has rotated $2 / 3$ of the way ----> 240 degrees

The rider is 65 feet high

c) after 1 minute 15 seconds

75 seconds out of 3 minutes ---->

$$
\frac{75 \text { seconds }}{180 \text { seconds }}=\frac{150 \text { degrees }}{360 \text { degrees }}
$$

The rider is $45+20 \sqrt{3}$ high

Fill in the table of values for the height as a function of time...

time (seconds)	0	30	60	90	120	150	180	210	240
height (feet)									

time (seconds)	0	30	60	90	120	150	180	210	240
height (feet)	5	25	65	85	65	25	5	25	65

Right Triangles: Finding sides and angles (without a calculator!)
1)

2)

3)

Find the altitude of equilateral \triangle abc

Find the area of the above isosceles trapezoid

Given the diagonal is 20 . Find the area of the above rectangle.

In each triangle, find x and y . (calculator is NOT necessary)
A)

B)

C)

D)

E)

F)

G)

H)

1)

2)

3)

4)

5) X-24-25 is a special one
6) $3-X-5$ is a special one
7) Number of obtuse angles in a right triangle?
8)

$\square 0 \rightarrow$

\qquad

\qquad

\qquad

\qquad

\qquad
9)

10) $\mathrm{X}-12-13$ is a special one
11)

12)

13) Number of right angles in an equilateral triangle?
14)

15)

16)

17) Number of right angles in a square?
18)

19)

20)

SOLUTIONS - \rightarrow

Right Triangles: Finding sides and angles (without a calculator!)

1)

$\mathrm{X}=3$ because
3-4-5 special triangle
2)

14
45-45-90 triangle
therefore, $X=14 \sqrt{2}$
Or, $X=\sqrt{196+196}$

$$
=14 \sqrt{2}
$$

3)

Find the altitude of equilateral $\triangle \mathrm{abc}$

An equilateral triangle has angles of 60-60-60.. this is helpful, since the altitude produces two $30-60-90$

And, altitude is $4 \sqrt{3}$

using
pythagorean theorem:

$$
\begin{aligned}
& 6^{2}+9^{2}=Y^{2} \\
& 36+81=Y^{2} \\
& Y=\sqrt{117}
\end{aligned}
$$

30-60-90 triangle
$Z=5 \times 2=10$
$Y=5 \times \sqrt{3}$
To check answer, try $5^{2}+5 \sqrt{3}^{2}=10^{2}$ pythagorean theorem

$$
\mathrm{Z}=30 \text { because } 30-72-78 \text { is }
$$

$$
78^{2}=72^{2}+Z^{2}
$$

SOLUTIONS

$$
6 \times(5-12-13) \text { triangle } \mathrm{OR},
$$

$$
\text { usin } \text { pythaqorean theorem-- }
$$

Since the hypoteneuse is 2 x one of the legs, we can conclude it is a $30-60-90$ triangle. Therefore, angle b is 60 degrees. And, side W is $6 \sqrt{3}$

Find the area of the above isosceles trapezoid
Area Trapezoid $=1 / 2\left(b_{1}+b_{2}\right) h$ base $1=10$
base $2=4+10+4=18$
To finde height, we consider the 30-60-90 right triangle.
$--->$ height $=4 N \sqrt{3}$
Area of Trapezoid $=$ $1 / 2(10+18) 4 \sqrt{3}=$ $56 \sqrt{3}$

Given the diagonal is 20 .
Find the area of the above rectangle.

We know the diagonal (hypoteneuse) and the angle formed by the diagonal.

Area of rectangle is length x width $=$ $10 \times 10 \sqrt{3}=100 N \sqrt{3}$

SOLUTIONS

In each triangle, find x and y . (calculator is NOT necessary)

A)

2 congruent legs, so it is a 45-45-90 right triangle...

$$
\begin{aligned}
& \mathrm{y}=4 \\
& \mathrm{x}=4 \sqrt{2}
\end{aligned}
$$

B)

30-60-90 right triangle...
small leg is $1 / 2$ the hypotenuse..

$$
x=7
$$

medium side is small $\cdot \sqrt{3}$
$\mathrm{y}=7 / \sqrt{3}$
C)

$$
x=10 \quad y=10
$$

D)

recognizing the ratios of the sides,

$$
\mathrm{y}=4 \quad \text { and } \quad \mathrm{x}=8
$$

F)

since the small leg is $8 \sqrt{3}$, the big leg is $\sqrt{3} \cdot 8 \sqrt{3}=24=\mathrm{x}$ and, the hypotenuse is $2 \cdot 8 \sqrt{3}=16 \sqrt{3}=y$
H)

$$
\begin{aligned}
& \frac{8}{x}=\frac{\sqrt{3}}{1} \\
& \sqrt{3} x=8 \\
& x=\frac{8}{\sqrt{3}}
\end{aligned}
$$

$$
y=2 \cdot \frac{8}{\sqrt{3}}=\frac{16}{\sqrt{3}}
$$

1)

SOLUTIONS

Right angles are 90 degrees.

In a 30-60-90 right triangle, the length of the hypotenuse is twice the measure of the small side opposite the 30 degree angle.

2)

3)

Use Pythagorean Theorem:
$\mathrm{X}^{2}+(7)^{2}=(\sqrt{50})^{2}$

$$
\mathrm{X}=1
$$

4)

Since 2 sides are congruent, this
 is an 45-45-90 triangle. therefore, $\quad \mathrm{X}=\frac{\sqrt{162}}{\sqrt{2}}=9$
5) $\mathrm{X}-24-25$ is a special one

7-24-25
(Use Pythagorean Theorem
6) $3-\mathrm{X}-5$ is a special one

$$
3-4-5
$$ to confirm)

7) Number of obtuse angles in a right triangle?

There are NO obtuse angles in a right triangle.

All sides congruent, so it is an equilateral triangle.. And, all angles are 60

$$
\begin{array}{r}
\text { equilateral triangle.. And, all angles are } \\
\text { degrees. }
\end{array}
$$

9)

10) $\mathrm{X}-12-13$ is a special one
11)

$$
\mathrm{X}=1
$$

(use pythagorean thm or $30-60-90$)
12)

$$
3-4-5 \quad-->60-80-100
$$

(multiply by 20)

13) Number of right angles in an equilateral triangle?

SOLUTIONS

14)

2 sides are congruent ---> 45-45-90 and, hypotenuse is $\sqrt{2} \cdot$ (side) $\quad \mathrm{X}=7$
15)

45-45-90 right triangle... $X=1$
divide by 10: X-24-25
then, X would be $7 \quad \mathrm{X}=70$
17) Number of right angles in a square?

Four right angles in a square
18)

ZERO (all angles are 60 degrees)
16)

(similar to 1-1-N

$$
X=\frac{7}{\sqrt{2}}
$$

19)

Hypotenuse is 2 x the small side. therefore, $\mathrm{X}=21 \sqrt{3}$
(similar to $1-\sqrt{3}-2$)
20)

Thanks for visiting. (Hope it helped!)
Find more geometry and trigonometry content at mathplane.com. (Notes, examples, practice tests, puzzles, comics, and more)

If you have questions, suggestions, or requests, let us know.
Enjoy

Also, Mathplane.ORG for mobile and tablets.
And, visit our store at TeachersPayTeachers

