Simplifying Negative Exponents and

 VariablesBrief notes, examples, and Worksheet (\& solutions)

Exponent definition:

$$
\mathrm{X}^{\mathrm{A}}=\mathrm{X}_{1} \cdot \mathrm{X}_{2} \cdot \mathrm{X}_{3} \cdot \ldots \cdot \mathrm{X}_{\mathrm{A}-2} \cdot \mathrm{X}_{\mathrm{A}-1} \cdot \mathrm{X}_{\mathrm{A}}
$$

Examples: $\quad 4^{5}=4 \cdot 4 \cdot 4 \cdot 4 \cdot 4=1024$

$$
\begin{aligned}
& \left(\frac{2}{3}\right)^{3}=\frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3}=\frac{8}{27} \\
& (-2)^{7}=(-2) \cdot(-2) \cdot(-2) \cdot(-2) \cdot(-2) \cdot(-2) \cdot(-2)=-128 \\
& (-2)^{6}=(-2) \cdot(-2) \cdot(-2) \cdot(-2) \cdot(-2) \cdot(-2)=64
\end{aligned}
$$

Rule \#l ('Addition Rule')

$$
x^{A} \cdot x^{B}=x^{A+B}
$$

Examples:

$$
\begin{aligned}
& x^{3} \cdot x^{5}=x^{8} \\
& 5^{3} \cdot 5^{2}=125 \cdot 25=3125=5^{5}
\end{aligned}
$$

Note:

$$
\mathrm{Y}^{2} \cdot \mathrm{Y}^{4} \quad=\quad \mathrm{Y}^{6}
$$

$$
(Y \times Y) \cdot(Y \times Y \times Y \times Y)=Y \times Y \times Y \times Y X Y X Y
$$

$$
\begin{array}{lll}
2 & 4 & 6 \text { total } Y \text { 's }
\end{array}
$$

Rule \#2: ('Multiplication Rule')

$$
\left(\mathrm{X}^{\mathrm{A}}\right)^{\mathrm{B}}=\mathrm{X}^{\mathrm{AB}}
$$

Examples: $\left(\mathrm{X}^{4}\right)^{3}=\mathrm{X}^{12}$

$$
\left(4^{2}\right)^{4}=4^{8}=16^{4}=65536
$$

Note: $\quad\left(\mathrm{Y}^{5}\right)^{3}=(\mathrm{YxYxYxYxY}) \cdot(\mathrm{YxYxYxYxY}) \cdot(\mathrm{YxYxYxYxY})=\mathrm{Y}^{15}$

$$
\begin{array}{rl}
\left(\mathrm{Y}^{5}\right)=(\mathrm{Y} \times \mathrm{Y} \times \mathrm{Y} \times \mathrm{Y} \times \mathrm{Y}) \cdot(\mathrm{Y} \times \mathrm{Y} \times \mathrm{Y} \times \mathrm{Y} \times \mathrm{Y}) \cdot(\mathrm{Y} \times \mathrm{Y} \times \mathrm{Y} \times \mathrm{Y} \times \mathrm{Y})= & \mathrm{Y}^{15} \\
5 & 3 \text { groups of } 5 \mathrm{Y}^{\prime} \mathrm{s} \\
& \\
& \text { total: } 3 \times 5=15 \mathrm{Y}^{\prime} \mathrm{s}
\end{array}
$$

Rule \#3: ('zero exponent')

$$
x^{0}=1
$$

Examples: $\quad \mathrm{Y}^{0}=1$

$$
8^{0}=1
$$

$$
(3 \mathrm{~cd})^{0}=1
$$

$$
\begin{array}{rlrl}
\text { What is } 0^{0} ? \quad 0^{\mathrm{A}}=0 & \text { because } 0 \cdot 0 \cdot 0 \cdot 0 \ldots=0 \\
& (\text { if } \mathrm{A} \neq 0) & \\
\mathrm{X}^{0}=1 \quad \text { (zero exponent rule) } & 0^{0}=1
\end{array}
$$

Note: $Z^{5} \cdot Z^{-5}=Z^{0}=1$
addition rule --- then, zero exponent
rule
$\sim Z^{5}$

$$
\frac{Z \times Z \times Z \times Z \times Z}{Z \times Z \times Z \times Z \times Z}=1
$$

\qquad Z^{-5}

Rule \#4: ('negatives' or 'reciprocal rule')

$$
\mathrm{X}^{(-\mathrm{A})}=\frac{1}{\mathrm{X}^{\mathrm{A}}}
$$

Examples:

$$
\begin{aligned}
& \mathrm{X}^{-3}=\frac{1}{\mathrm{x}^{3}} \\
& 5^{-2}=\frac{1}{25} \quad \text { It is not equal to }-25!!! \\
& \left(\frac{1}{3}\right)^{-4}=81
\end{aligned}
$$

$$
\text { Note: } \quad \begin{aligned}
& \mathrm{Y}^{(-\mathrm{A})}=\mathrm{Y}^{(-\mathrm{A})} \cdot \frac{\mathrm{Y}^{\mathrm{A}}}{\mathrm{Y}^{\mathrm{A}}}=\frac{\mathrm{Y}^{(-\mathrm{A})} \cdot \mathrm{Y}^{\mathrm{A}}}{\mathrm{Y}^{\mathrm{A}}}=\frac{\mathrm{Y}^{(-\mathrm{A}+\mathrm{A})}}{\mathrm{Y}^{\mathrm{A}}}=\frac{\mathrm{Y}^{0}}{\mathrm{Y}^{\mathrm{A}}}=\frac{1}{\mathrm{Y}^{\mathrm{A}}} \\
& \begin{array}{c}
\text { multiply by } \\
\text { one }
\end{array} \begin{array}{c}
\text { exponent } \\
\text { addition rule } \\
\text { exponent }
\end{array}
\end{aligned}
$$

Rule \#5: ('base rule')

$$
\mathrm{X}^{\mathrm{A}} \cdot \mathrm{Y}^{\mathrm{A}}=(\mathrm{XY})^{\mathrm{A}}
$$

Examples: $\quad 5^{3} \cdot 7^{3}=125 \times 343=42875=35^{3}$

$$
=(5 \times 5 \times 5) \times(7 \times 7 \times 7)=(5 \times 7) \times(5 \times 7) \times(5 \times 7)
$$

$$
\begin{aligned}
& 4^{\frac{1}{2}} \cdot 16^{\frac{1}{2}}=64^{(1 / 2)}=8 \\
& \sqrt{4} \times \sqrt{16}=\sqrt{4 \times 16}=\sqrt{64}
\end{aligned}
$$

Rule \#6: ('rational exponents')

$$
\mathrm{x}^{(1 / 2)}=\sqrt{\mathrm{x}} \quad \mathrm{x}^{\left(\frac{\mathrm{A}}{\mathrm{~B}}\right)}=\sqrt{\mathrm{B}} \mathrm{x}^{\mathrm{A}}
$$

Examples:

$$
\begin{aligned}
25^{(1 / 2)} & =\sqrt{25}=5 \\
8^{(1 / 3)} & =N^{3 / 8}=2 \quad\left(\text { 'cubed root of } 8^{\prime}\right) \\
121^{(.5)} & =11
\end{aligned}
$$

Note:

$$
\mathrm{Y}^{(1 / 2)} \cdot \mathrm{Y}^{(1 / 2)}=\mathrm{Y}^{1} \quad \sqrt{\mathrm{Y}} \cdot \sqrt{\mathrm{Y}}=\mathrm{Y}
$$

(addition
exponent rule)

$$
8^{(1 / 3)} \cdot 8^{(1 / 3)} \cdot 8^{(1 / 3)}=8^{1}=8
$$

Example: Simplify $\frac{\mathrm{x}^{5}}{\mathrm{x}^{8}}$
Simplifying variables with exponents

Method 1: Use Exponent Rules

$$
\begin{aligned}
\frac{x^{5}}{x^{8}} \leadsto x^{5-8}= & x^{-3}=\frac{1}{x^{3}} \\
\begin{array}{c}
\text { "Subtraction } \\
\text { Rule" }
\end{array} & \begin{array}{c}
\text { "Negatives/Reciprocal } \\
\text { Rule" }
\end{array}
\end{aligned}
$$

Method 2: Count the variables
$\frac{x^{5}}{x^{8}} \leadsto \frac{x \times x x x}{x x x x x x x x}=\frac{1}{x \times x}=\frac{1}{x^{3}}$
5 cancel
out

Example: Simplify $\frac{a^{2} b^{3} c^{4}}{a^{5} b^{3} c^{8}}$

This is a 3-part problem: 1) simplify the a's $\quad 2$) simplify the b's $\quad 3$) simplify the c's

so, two a's cancel out

so, three b's cancelled

so, four c's cancel out

Exponents and Variables Examples: $\quad \mathrm{x}=-2 \quad \mathrm{y}=4 \quad \mathrm{z}=\frac{1}{3}$
a) X^{-2}
b) $x y^{0} z^{3}$
c) $\frac{y^{-3} z x^{5}}{x^{2} z^{2}}$
d) $\frac{5 x^{3} y^{3}}{25 x y^{-2} z^{-1}}$
e) $\frac{\left(x^{2} y^{-3} z^{4}\right)^{2}}{x^{-1} y^{-3} z^{6}}$
a) $x^{-2}=\frac{1}{x^{2}} \quad$ simplify the variable
b) $x y^{0} z^{3}=(-2)(4)^{0}\left(\frac{1}{3}\right)^{3} \quad$ substitute $-2 \cdot 1 \cdot \frac{1}{27} \quad$ simplify
$\frac{1}{(-2)^{2}}$ substitute

-2
27

c) $\frac{y^{-3} z x^{5}}{x^{2} z^{2}}=\frac{x^{5} z}{x^{2} y^{3} z^{2}} \quad \begin{aligned} & \text { rearrange variables } \\ & \text { (reciprocal rule) }\end{aligned}$

$$
\frac{x^{3}}{y^{3} z} \quad \text { simplify }
$$

$$
\frac{(-2)^{3}}{(4)^{3}\left(\frac{1}{3}\right)} \quad \text { substitute }
$$

d) $\frac{5 x^{3} y^{3}}{25 x y^{-2} z^{-1}}=\frac{1 x^{2} y^{5} z^{1}}{5}$
simplify each variable and the numbers
then, substitute $\frac{1 \cdot(-2)^{2} \cdot(4)^{5} \cdot\left(\frac{1}{3}\right)}{5}$
$\frac{1024}{15}$
e) $\frac{\left(x^{2} y^{-3} z^{4}\right)^{2}}{x^{-1} y^{-3} z^{6}}=\frac{x^{4} y^{-6} z^{8}}{x^{-1} y^{-3} z^{6}}$ (exponent rule)

$$
\frac{x^{5} z^{2}}{y^{3}} \text { (addition/subtraction rule) }
$$

then, substitute

$$
\frac{(-2)^{5} \cdot\left(\frac{1}{3}\right)^{2}}{(4)^{3}}=\frac{-1}{18}
$$

$\frac{-8}{\frac{64}{3}}=\frac{-3}{8}$

Worksheets and Solutions- \rightarrow

$a^{3} \cdot a^{8}$
$a^{4} \cdot a^{-7}$
$a^{-5} \cdot a^{-2}$
$a^{0} \cdot a^{-5}$
$\frac{x^{5}}{x^{2}}$
$\frac{x^{2}}{x^{5}}$
$\frac{x^{-6}}{x^{7}}$
$\frac{x^{7}}{x^{-4}}$

$$
b^{4} \cdot b^{-8}
$$

$b^{4} \div b^{-8}$
$b^{8} \cdot b^{-4}$
$b^{8} \div b^{-4}$
$\frac{\mathrm{m}^{6} \cdot \mathrm{~m}^{-2}}{\mathrm{~m}^{3}}$
$\mathrm{m}^{5} \cdot \mathrm{~m}^{-3} \cdot \mathrm{~m}^{0}$

$$
\frac{\mathrm{m}^{7} \cdot \mathrm{~m}^{5}}{\mathrm{~m}^{-4}}
$$

$$
\mathrm{m}^{-6} \cdot \mathrm{~m}^{-3} \cdot \mathrm{~m}
$$

Simplify the following:

1) $\left(3 a^{2}\right)^{3}$
2) $\left(2 b^{3}\right)^{2}$
3) $\left(-2 \mathrm{c}^{3}\right)^{-2}$
4) $\left(-4 \mathrm{~d}^{2}\right)\left(-5^{-3}\right)$
5) $\left(3 e^{2}\right)\left(-2 e^{0}\right)^{2}$
6) $\left(-8 f^{2}\right)\left(\mathrm{fg}^{-2}\right)$
7) $h^{-2}\left(h^{2} j^{3}\right)^{4}(-j k)^{5}$
8) $\left(3 \mathrm{k}^{7} \mathrm{~lm}\right)^{-2}\left(1^{2} \mathrm{~m}\right)^{0}$
9) $\frac{6 \mathrm{p}^{3} \mathrm{q}^{2}}{4 \mathrm{pq}^{-2}}$
10) $\frac{\mathrm{a}^{3} \mathrm{~b}^{2} \mathrm{c}^{-1}}{\mathrm{~b}^{2} \mathrm{~cd} \mathrm{~d}^{-3}}$
11) $\frac{-2 \mathrm{tu}^{5} \mathrm{v}^{10}}{\left(4 \mathrm{t}^{2} \mathrm{v}\right)^{2}}$
12) $\frac{5 \mathrm{r}\left(\mathrm{s}^{0} \mathrm{t}\right)^{-3}}{\left(5 \mathrm{st}^{2}\right)^{2}}$
13) $\frac{\left(\mathrm{x}^{2} \mathrm{y}^{-3}\right)(3 \mathrm{xy})}{\left(\mathrm{xy}^{2}\right)^{2}\left(6 \mathrm{x}^{2} \mathrm{y}\right)}$
14) $\frac{\left(7 \mathrm{x}^{9} \mathrm{y}^{8}\right)^{0}\left(3 \mathrm{xy}{ }^{2}\right)^{-2}}{-2\left(6 \mathrm{x}^{2}\right)\left(\mathrm{xy}{ }^{-2}\right)}$
15) $\frac{\left(\mathrm{a}^{2} \mathrm{~b}^{5}\right)^{3}}{(\mathrm{ab})^{-2}} \div \frac{\left(\mathrm{ab}{ }^{-1}\right)}{\left(\mathrm{a}^{0} \mathrm{~b}\right)^{2}}$
16) $\frac{\text { def }}{\left(d^{2} e^{3} \mathrm{f}\right)^{-1}} \div$ fed

Simplify the following:

1) $\left(3 a^{2}\right)^{3}$
2) $\left(2 b^{3}\right)^{2}$
3) $\left(-2 c^{3}\right)^{-2}$
4) $\left(-4 \mathrm{~d}^{2}\right)\left(-5^{-3}\right)$
$27 a^{6}$

$\frac{1}{\left(-2 c^{3}\right)^{2}}=\frac{1}{\left(-2 c^{3}\right)\left(-2 c^{3}\right)}$ $\left(-4 \mathrm{~d}^{2}\right) \frac{-1}{125}$ $\frac{1}{4 c^{6}}$

$$
\frac{4 \mathrm{~d}^{2}}{125}
$$

5) $\left(3 \mathrm{e}^{2}\right)\left(-2 \mathrm{e}^{0}\right)^{2}$

$$
\left(3 \mathrm{e}^{2}\right)(-2)^{2}
$$

$$
12 \mathrm{e}^{2}
$$

6) $\left(-8 \mathrm{f}^{2}\right)\left(\mathrm{fg}^{-2}\right)$
$\frac{-8 f^{2}}{1} \cdot \frac{f}{g^{2}}$
7) $h^{-2}\left(h^{2} j^{3}\right)^{4}(-j k)^{5}$
8) $\left(3 \mathrm{k}^{7} \mathrm{~lm}\right)^{-2}\left(1^{2} \mathrm{~m}\right)^{0}$
$\frac{h^{8} j^{12}}{h^{2}} \cdot(-1)^{5} j^{5} k^{5}$

$$
\begin{aligned}
& \frac{1}{\left(3 \mathrm{k}^{7} \mathrm{~lm}\right)^{2}} \\
& \frac{1}{9 \mathrm{k}^{14} \mathrm{l}^{2} \mathrm{~m}^{2}}
\end{aligned}
$$

9) $\frac{6 \mathrm{p}^{3} \mathrm{q}^{2}}{4 \mathrm{pq}^{-2}}$
10) $\frac{\mathrm{a}^{3} \mathrm{~b}^{2} \mathrm{c}^{-1}}{\mathrm{~b}^{2} \mathrm{~cd}}$
11) $\frac{-2 \mathrm{tu}^{5} \mathrm{v}^{10}}{\left(4 \mathrm{t}^{2} \mathrm{v}\right)^{2}}$
$\frac{-2 t u^{5} v^{10}}{16 t^{4} v^{2}}$
12) $\frac{5 \mathrm{r}\left(\mathrm{s}^{0} \mathrm{t}\right)^{-3}}{\left(5 \mathrm{st}^{2}\right)^{2}}$
$\frac{a^{3} d^{3}}{c^{2}}$
$-h^{6} j^{17} k^{5}$

$$
\frac{-\mathrm{u}^{5} \mathrm{v}^{8}}{8 \mathrm{t}^{3}}
$$

$$
\begin{gathered}
\frac{5 r(t)^{-3}}{25 s^{2} t^{4}} \\
\frac{r}{5 s^{2} t^{7}} \\
\hline
\end{gathered}
$$

$$
\text { 12) } \begin{aligned}
& \frac{\left(x^{2} y^{-3}\right)(3 x y)}{\left(x y^{2}\right)^{2}\left(6 x^{2} y\right)} \\
& \frac{x^{2} \cdot 3 x y}{y^{3}} \\
& \frac{x^{2} y^{4} \cdot 6 x^{2} y}{\frac{3 x^{3}}{y^{2}} y^{5}} \\
& \frac{1}{2 x y^{7}}
\end{aligned}
$$

13) $\frac{\left.\left(7 \mathrm{x}^{9} \mathrm{y}^{8}\right)^{0}(3 \mathrm{xy})^{2}\right)^{-2}}{-2\left(6 \mathrm{x}^{2}\right)\left(\mathrm{xy} y^{-2}\right)}$
14)

$\frac{\left(a^{2} b^{5}\right)^{3}}{(a b)^{-2}} \div \frac{\left(a b^{-1}\right)}{\left(a^{0} b\right)^{2}}$
15)

$$
\frac{\text { def }}{\left(d^{2} e^{3} f\right)^{-1}} \div \text { fed }
$$

$$
\frac{1 \cdot 3^{-2} x^{-2} y^{-4}}{-12 x^{3} y^{-2}}
$$

$$
\frac{a^{6} b^{15}}{a^{-2} b^{-2}} \div \frac{a b^{-1}}{b^{2}}
$$

$$
\frac{\text { def }}{\left(d^{2} e^{3} f\right)^{-1}} \cdot \frac{1}{\text { fedt }}
$$

$$
\frac{\frac{1}{9}}{-12 x^{5} \cdot y^{2}}
$$

$$
\begin{gathered}
a^{8} b^{17} \div \frac{a}{b^{3}} \\
a^{8} b^{17} \cdot \frac{b^{3}}{a} \\
a^{7} b^{20}
\end{gathered}
$$

