Radicals

Brief notes, quiz (w/solutions), and comic

Topics include prime factorization, rationalizing the denominator, perfect squares, and more.

Strategy 1: Prime Factorization

$$
\sqrt{700}
$$

Factor (to primes)	$\sqrt{7 \cdot 2 \cdot 5 \cdot 2 \cdot 5}$
Remove "pairs"	$2 \cdot 5 \sqrt{7}$
Simplify	$10 \sqrt{7}$

Strategy 2: Using Perfect Squares

$$
\sqrt{700}
$$

Factor	$\sqrt{7 \cdot 100}$
Remove Perfect Squares	$10 \sqrt{7}$

Rationalizing the Denominator

It's improper to have a radical in the denominator. So, to correct a fraction, simply rationalize the denominator.

Single term denominator:

$$
\begin{aligned}
\frac{2}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} & \frac{2 \sqrt{5}}{5} \\
\text { multiply by } 1 & \text { radical moves to numerator }
\end{aligned}
$$

Double term denominator: use the conjugate

$$
\frac{3}{4+\sqrt{6}} \cdot \frac{4-\sqrt{6}}{4-\sqrt{6}} \longrightarrow \frac{12-3 \sqrt{6}}{10}
$$

$\sqrt{\text { Radicals Quiz }}$
I. Simplify
a) $\sqrt{125}$

b) $\sqrt{56 \mathrm{~b}^{2}}$
c) $\sqrt{68}$
d) $\sqrt{128 a b^{3}}$
e) $\sqrt{99}$
II. True or False?
a) $\sqrt{\mathrm{a}+\mathrm{b}}=\sqrt{\mathrm{a}}+\sqrt{\mathrm{b}}$
b) $\sqrt{\mathrm{ab}}=\sqrt{\mathrm{a}} \sqrt{\mathrm{b}}$
c) $\sqrt{\frac{\mathrm{a}}{\mathrm{b}}}=\frac{\sqrt{\mathrm{a}}}{\sqrt{\mathrm{b}}}$
III. Combine the terms
a) $\sqrt{5}+3 \sqrt{25}+5 \sqrt{125}$
b) $\sqrt{2}+\sqrt{4}+\sqrt{8}+\sqrt{16}$
c) $2 \sqrt{49}-(\sqrt{64}+14)$
IV. Miscellaneous
a) List all perfect squares <150
b) $3 \sqrt{7}+2 \sqrt{28}-\sqrt{162}-\sqrt{2}=$
c) $3 \sqrt{3} \cdot 6 \sqrt{3}=$
d) $3 \sqrt{3}+6 \sqrt{3}=$
V. Simplify (and, if necessary, rationalize the denominator)
a) $\sqrt{\frac{44}{144}}$
b) $\frac{(3 \sqrt{7}+8 \sqrt{7})}{22}$
c) $\frac{3}{\sqrt{3}}$
d) $\frac{16}{\sqrt{17}}$
e) $\frac{3 \sqrt{7} \cdot 8 \sqrt{7}}{\sqrt{2} \cdot \sqrt{8}}$
f) $\sqrt{2}(3 \sqrt{3}+2 \sqrt{2})$

ANSWERS- \rightarrow

SOLUTIONS

I. Simplify
a) $\sqrt{125} \quad \sqrt{5 \cdot 25}=5 / \sqrt{5}$
b) $\sqrt{56 \mathrm{~b}^{2}} \quad \sqrt{4 \cdot 2 \cdot 7 \cdot \mathrm{~b} \cdot \mathrm{~b}}=2 \mathrm{~b} \sqrt{14}$
c) $\sqrt{68} \quad \sqrt{2 \cdot 2 \cdot 17}=2 \sqrt{17}$
d) $\sqrt{128 \mathrm{ab}^{3}} \quad \sqrt{2 \cdot 64 \cdot \mathrm{a} \cdot \mathrm{b} \cdot \mathrm{b}^{2}}=8 \mathrm{~b} \sqrt{2 \mathrm{ab}}$ factor remove perfect squares
e) $\sqrt{99} \quad \sqrt{9 \cdot 11}=3 / \sqrt{11}$
II. True or False?
a) $\sqrt{\mathrm{a}+\mathrm{b}}=\sqrt{\mathrm{a}}+\sqrt{\mathrm{b}}$

False... EX: $a=4 \quad b=16$
(an exception: $\mathrm{a}=\mathrm{b}=0$)
b) $\sqrt{\mathrm{ab}}=\sqrt{\mathrm{a}} \sqrt{\mathrm{b}} \quad$ True...
c) $/ \sqrt{\frac{\mathrm{a}}{\mathrm{b}}}=\frac{\sqrt{\mathrm{a}}}{\sqrt{\mathrm{b}}} \quad$ True...
III. Combine the terms
a) $\sqrt{5}+3 / \sqrt{25}+5 / \sqrt{125}$

$$
\sqrt{5}+3 \sqrt{5 \cdot 5}+5 \sqrt{5 \cdot 25}=
$$

$$
1 \sqrt{5}+3 \cdot 5+25 \sqrt{5}=15+26 \sqrt{5}
$$

b) $\sqrt{2}+\sqrt{4}+\sqrt{8}+\sqrt{16}$

$$
\sqrt{2}+2+2 \sqrt{2}+4=6+3 \sqrt{2}
$$

c) $2 \sqrt{49}-(\sqrt{64}+14)$

$$
\begin{aligned}
2 \cdot 7-(8+14) & =14-22 \\
& =-8
\end{aligned}
$$

IV. Miscellaneous

Radicals Quiz (continued)
a) List all perfect squares $<150 \quad 1,2,4,9,16,25,36,49,64,81,100,121,144$
b) $3 \sqrt{7}+2 \sqrt{28}-\sqrt{162}-\sqrt{2}=3 \sqrt{7}+4 \sqrt{7}-9 \sqrt{2}-\sqrt{2}=7 \sqrt{7}-10 \sqrt{2}$
c) $3 \sqrt{3} \cdot 6 \sqrt{3}=3 \cdot 6 \cdot \sqrt{3} \cdot \sqrt{3}=54$
d) $3 \sqrt{3}+6 \sqrt{3}=9 \sqrt{3}$
V. Simplify (and, if necessary, rationalize the denominator)
a) $\sqrt{\frac{44}{144}} \quad \frac{2 \sqrt{11}}{12}=\frac{\sqrt{11}}{6}$

b) $\frac{(3 \sqrt{7}+8 \sqrt{7})}{22} \quad \frac{11 \sqrt{7}}{22}=$| $\frac{\sqrt{7}}{2}$ |
| :---: |

c) $\frac{3}{\sqrt{3}} \cdot\left(\frac{\sqrt{3}}{\sqrt{3}}\right)=\frac{3 \sqrt{3}}{3}=\sqrt{3}$
d) $\frac{16}{\sqrt{17}} \cdot\left(\frac{\sqrt{17}}{\sqrt{17}}\right)=\frac{16 \sqrt{17}}{17}$
e) $\frac{3 \sqrt{7} \cdot 8 \sqrt{7}}{\sqrt{2} \cdot \sqrt{8}} \quad \frac{24 \cdot 7}{\sqrt{16}}=42$
f) $\sqrt{2}(3 \sqrt{3}+2 \sqrt{2})$
distribute: $\quad 3 \sqrt{6}+2 \sqrt{4}=4+3 N \sqrt{6}$

Finding square roots of numbers that aren't perfect squares (without a calculator)

1) Estimate - Get close by finding 2 perfect squares that your number is between.
2) Divide - Divide your number by one of those square roots.
3) Average - Take the average of the result and the root.
4) Repeat - Use the result of step 3 to repeat steps 2 and 3, until you get a number accurate enough for you.

Example: Calculate the square root of 10 to two decimal places.

1) $3^{2}=9$
So, $\sqrt{10}$ will be between 3 and 4
$4^{2}=16$
2) Since 10 is closer to 9 , we'll use the square root of 9 .

10 divided by $3=3.33 \overline{3}$
3) Find the average of 3.000 and $3.33 \overline{3}$

$$
(3.333+3) / 2=3.1667
$$

4) (repeat step 2)

10 divided by $3.1667=3.1579$
(repeat step 3)

$$
(3.1579+3.1667) / 2=3.1623
$$

Check the answer: $3.1623 \times 3.1623=10.0001$

Example: Calculate $\sqrt{71}$ (without a calculator)

1) 64 and 81 are perfect squares near 71 .
2) $\sqrt{64}=8 \quad \frac{71}{8}=8.875$
3) Average of $8 \& 8.875$ is $\frac{(8+8.875)}{2}=8.4375 \quad 8.4375 \times 8.4375=71.1914$
4) (repeat) $\frac{71}{8.4375}=8.4148$

Thanks for visiting. (Hope this quiz helped!)
If you have questions, suggestions, or requests, let us know. Cheers,

Also, at Facebook, Google+, Pinterest, and TeachersPayTeachers

Two more questions:

Simplify:
$\sqrt{45}+2 \sqrt{20}+\frac{1}{2} \sqrt{500}$

Simplify

$$
\frac{5 \sqrt{6}}{2 \sqrt{3}}
$$

Simplify:

$$
\begin{aligned}
& \sqrt{45}+2 \sqrt{20}+\frac{1}{2} \sqrt{500} \\
& \sqrt{5 \cdot 9}+2 \sqrt{5 \cdot 4}+\frac{1}{2} \sqrt{5 \cdot 100} \\
& \sqrt{5} \cdot \sqrt{9}+2 \cdot \sqrt{5} \cdot \sqrt{4}+\frac{1}{2} \cdot \sqrt{5} \cdot \sqrt{100} \\
& \sqrt{5} \cdot 3+2 \cdot \sqrt{5} \cdot 2+\frac{1}{2} \cdot \sqrt{5} \cdot 10 \\
& 3 \sqrt{5}+4 \sqrt{5}+5 \sqrt{5} \\
& 12 \sqrt{5}
\end{aligned}
$$

Simplify

$$
\frac{5 \sqrt{6}}{2 \sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=
$$

$$
\frac{5 \sqrt{18}}{2 \sqrt{9}}=
$$

$$
\frac{5 \sqrt{2 \cdot 9}}{2 \cdot 3}=
$$

$$
\frac{15 \sqrt{2}}{6}=
$$

$$
\frac{5 \sqrt{2}}{3}
$$

