Algebra II/Trigonometry

Working with Polar and Rectangular Coordinates

Brief Notes, Examples, and Practice Quiz (and Solutions)

Different Planes can be a Pain!

The Cartesian Plane

Origin: $(0,0)$
Quadrants I, II, III, and IV
Points: (x, y)
"Origin" or "Pole" : $(0, \ominus)$
Points: (r, \ominus)

Polar Coordinate System (continued)

Note the difference!
$\left(3,150^{\circ}\right)$
vs.
$\left(-3,150^{\circ}\right)$

Note the similarity!
$\left(4,210^{\circ}\right)$
and

$$
\left(4,-150^{\circ}\right)
$$

Note: Consider all the coterminal angles and (-r) Example: $\left(4,210^{\circ}\right)$

$$
\begin{aligned}
\left(4,210^{\circ}\right) & =\left(4,360^{\circ} \mathrm{n}+210^{\circ}\right) \\
& =\left(-4,360^{\circ} \mathrm{n}+30^{\circ}\right)
\end{aligned}
$$

(n is any integer)

Rectangular: $(3,3)$
Polar: $\left(3 \sqrt{2}, 45^{\circ}\right)$

Rectangular Coordinates: (x, y)
Polar Coordinates: (r, \ominus)

Important Implications: To convert from Rectangular to Polar coordinates,

$$
\sin \ominus=\frac{y}{r} \quad \cos \ominus=\frac{x}{r} \quad x^{2}+y^{2}=r^{2}
$$

Or, to convert from polar to rectangular,

$$
x=r \cos \ominus \quad y=r \sin \ominus
$$

Polar Coordinates vs. Rectangular Coordinates

Example: Convert rectangular coordinates $(3,7)$ into polar coordinates

$$
\begin{aligned}
& x=r \cos \ominus \\
& y=r \sin \ominus \\
& x^{2}+y^{2}=r^{2} \quad(r, \ominus)=\left(\sqrt{58}, 66.8^{\circ}\right) \\
& 9+49=58 \quad r=\sqrt{58} \\
& \tan \ominus=\frac{y}{x}=\frac{7}{3} \\
& \ominus=66.8^{\circ}
\end{aligned}
$$

Example: Convert polar coordinates $\left(4,38^{\circ}\right)$ into rectangular coordinates

$$
\begin{array}{lll}
x=r \cos \ominus & x=4 \cos \left(38^{\circ}\right) & x=3.15 \\
y=r \sin \ominus & y=4 \sin \left(38^{\circ}\right) & y=2.46
\end{array}
$$

Example: Change $(-6,11)$ into polar coordinates

$$
\begin{aligned}
& x=r \cos \ominus \\
& y=r \sin \ominus \quad(r, \ominus)=\left(\sqrt{157}, 118.7^{\circ}\right) \\
& x^{2}+y^{2}=r^{2} \quad r=\sqrt{157} \\
& (-6)^{2}+(11)^{2}=r^{2} \\
& 36+121=157 \quad \begin{array}{l}
x \\
\tan \Theta=\frac{y}{x}=\frac{11}{-6}=-61.3^{\circ} \text { and, since it is in Quadrant II, } \\
\quad \ominus=118.7^{\circ}
\end{array},
\end{aligned}
$$

Example: Express $\left(5,102^{\circ}\right)$ as rectangular coordinates

$$
\begin{array}{lll}
x=r \cos \ominus & x=5 \cos \left(102^{\circ}\right) & x=-1.04 \\
y=r \sin \ominus & y=5 \sin \left(102^{\circ}\right) & y=4.89
\end{array}
$$

Imaginary Plane of Complex Numbers

$$
\begin{aligned}
\text { "Imaginary" Number: } & i=\sqrt{-1} \\
& i^{2}=-1
\end{aligned}
$$

"Complex" Number: $\mathrm{z}=\mathrm{x}+\mathrm{yi}$ or $\mathrm{z}=(\mathrm{x}, \mathrm{y})$
where x is the real component y is the imaginary component

$$
\text { Rectangular Form: } \mathrm{x}+\mathrm{yi}
$$

Polar Form:

$$
z=r(\cos \ominus+i \sin \ominus)
$$

or
$\mathrm{rCis} \ominus$

Complex Numbers: Polar and Rectangular

 Random Notes and Formulas$$
\begin{aligned}
& \mathrm{r}(\cos \ominus+i \sin \ominus) \\
& \mathrm{Z}_{1} \mathrm{Z}_{2}=\mathrm{r}_{1} \mathrm{r}_{2} \operatorname{Cis}\left(\ominus_{1}+\ominus_{2}\right) \\
& \frac{Z_{1}}{\mathrm{Z}_{2}}=\frac{r_{1}}{\mathrm{r}_{2}} \operatorname{Cis}\left(\ominus_{1}-\ominus_{2}\right)
\end{aligned}
$$

Converting rectangular to polar using a graph:

Examples: Convert $1+\mathrm{i}$ into polar

Convert 5-4i into polar

			$\mathrm{a}=5$ $\mathrm{~b}=-4$
R	5	$\mathrm{r}=\sqrt{41}$ (pythagorean theorem)	

$$
\sqrt{41} \operatorname{Cis}\left(321.35^{\circ}\right) \quad \cos \ominus=\frac{5}{\sqrt{41}}=38.65^{\circ}
$$

$$
360-38.65=321.35
$$

Converting Polar to Rectangular using the graph:

Example: Convert $4 \mathrm{Cis} 120^{\circ}$ into Rectangular


```
Example: \(\quad \mathrm{z}_{1}=-5 \sqrt{3}-5 i\)
\[
\text { Find } z_{1} z_{2} \text { and } \frac{z_{1}}{z_{2}} \quad \text { Identify }\left|z_{1}\right| \text { and }\left|z_{2}\right|
\]
\(z_{2}=2 \sqrt{3}+2 i\)
```

Method 1: Using Cis

$$
z_{1}=-5 \sqrt{3}-5 i \quad z_{2}=2 \sqrt{3}+2 i
$$

$10 \mathrm{Cis}(210)$

	$-5 \sqrt{3}$
-5	00

$4 \operatorname{Cis}(30)$

$\ominus=30^{\circ} \quad$ (quadrant I)

$$
\begin{aligned}
& z_{1} z_{2}=10 \operatorname{Cis}(210) \cdot 4 \operatorname{Cis}(30)=40 \operatorname{Cis}(240) \\
& \frac{z_{1}}{z_{2}}=10 \operatorname{Cis}(210) / 4 \operatorname{Cis}(30)=\frac{5}{2} \operatorname{Cis}(180)
\end{aligned}
$$

Method 2: Using component vector

$$
\begin{gathered}
z_{1}=-5 \sqrt{3}-5 i \quad z_{2}=2 \sqrt{3}+2 i \\
{ }^{z} 1_{1} z_{2}=(-5 \sqrt{3}-5 i)(2 \sqrt{3}+2 i) \quad \text { FOIL } \\
-30-10 \sqrt{3} i-10 \sqrt{3} i+10 \\
-20-20 \sqrt{3} i
\end{gathered}
$$

$$
\frac{z_{1}}{z_{2}}=\frac{-5 \sqrt{3}-5 i}{2 \sqrt{3}+2 i} \frac{(2 \sqrt{3}-2 i)}{(2 \sqrt{3}-2 i)}
$$

$$
\frac{-30+10 \sqrt{3} i-10 \sqrt{3} i-10}{12+4}
$$

$$
\begin{aligned}
& z_{1}=-5 \sqrt{3}-5 i \rightleftharpoons\left|z_{1}\right|=\sqrt{(-5 \sqrt{3})^{2}+(-5)^{2}}=\sqrt{75+25}=10 \\
& z_{2}=2 \sqrt{3}+2 i \longleftrightarrow\left|z_{2}\right|=\sqrt{(2 \sqrt{3})^{2}+(2)^{2}}=\sqrt{12+4}=4
\end{aligned}
$$

Note: These are the same measures as each hypotenuse in the above graphs

More Examples- \rightarrow

Examples: Identify the related coordinates and convert to polar form rcis \ominus

On a polar coordinate (Argand) plane, graph $r=4$ and $\ominus=2$

Example: For the line $\mathrm{y}=2$, what is the equation in polar coordinates?

$$
\begin{aligned}
& \sin \theta=\frac{y}{r} \\
& y=r \sin \theta \\
& \text { substitue } y=2 \\
& 2=r \sin \theta \\
& \mathrm{r}=\frac{2}{\sin \theta} \\
& \mathrm{r}=2 \csc \theta
\end{aligned}
$$

Method 1: Use the formula

$$
(5)(2) \operatorname{cis}\left(30^{\circ}+60^{\circ}\right)=10 \operatorname{cis} 90^{\circ} \quad<\quad Z_{1} Z_{2}=r_{1} r_{2} \operatorname{Cis}\left(\ominus_{1}+\ominus_{2}\right)
$$

Method 2: Change to complex number form and solve

$$
\begin{aligned}
\left(5 \operatorname{cis} 30^{\circ}\right)=2.5 \sqrt{3} & +2.5 i \\
a & +\mathrm{b} i
\end{aligned}
$$

$$
\begin{aligned}
\left(2 \operatorname{cis} 60^{\circ}\right)= & 1+\sqrt{3} i \\
& \mathrm{a}+\mathrm{b} i
\end{aligned}
$$

imaginary (b)

$$
\left(5 \operatorname{cis} 30^{\circ}\right)\left(2 \operatorname{cis} 60^{\circ}\right)=(2.5 \sqrt{3}+2.5 i)(1+\sqrt{3} i)
$$

FOIL

$$
\begin{aligned}
& 2.5 \sqrt{3}+7.5 i+2.5 i+2.5 \sqrt{3} i^{2} \\
& 2.5 \sqrt{3}+10 i-2.5 \sqrt{3} \\
& \quad 0+10 i
\end{aligned}
$$

change back to polar form

$$
10 \operatorname{cis} 90^{\circ}
$$

Example: $\left\{8 \operatorname{cis}\left(\frac{\Pi}{3}\right)\left\langle\left(\frac{1}{2} \operatorname{cis}\left(\frac{-2 \Pi}{3}\right)\right\}\right.\right.$
$\mathrm{r}_{1} \mathrm{r}_{2} \operatorname{Cis}\left(\ominus_{1}+\ominus_{2}\right)$
$8 \operatorname{cis} 60^{\circ}$----> $4+4 \sqrt{3} i$
$\frac{1}{2} \operatorname{cis}\left(-120^{\circ}\right) \cdots \cdot \frac{-1}{4}-\frac{\sqrt{3}}{4} i$
$\begin{aligned} &(8)\left(\frac{1}{2}\right) \operatorname{cis}\left(\frac{\pi T}{3}+\frac{-2 \Pi T}{3}\right)=\frac{4 \operatorname{cis}\left(\frac{-\pi}{3}\right)}{/} \\ & \text { imaginary }\end{aligned}$

$$
\begin{array}{rl}
r=-5 \frac{y}{r} \\
r^{2}=-5 y & y=r \sin \ominus \rightarrow \sin \ominus=\frac{y}{r} \\
x^{2}+y^{2}=-5 y & x^{2}+y^{2}=r^{2} \\
x^{2}+y^{2}+5 y=0 & \text { (circle) }
\end{array}
$$

$$
x^{2}+y^{2}+5 y=0 \quad \text { complete the square }
$$

$$
x^{2}+y^{2}+5 y+\frac{25}{4}=0+\frac{25}{4}
$$

$$
x^{2}+\left(y+\frac{5}{2}\right)^{2}=\frac{25}{4} \quad \begin{aligned}
& \text { standard form of circle with } \\
& \text { center }(0,-5 / 2)
\end{aligned}
$$

$\mathrm{r}=-5 \sin \ominus$

Example: Where do $\mathrm{r}=1+\sin \ominus$ and $\mathrm{r}=2 \sin \Theta$ intersect?

Solve by substitution:
$1+\sin \ominus=2 \sin \ominus$
$1=\sin \theta$
$\theta=90^{\circ}$

NOTE: The graphs intersect at $\left(2,90^{\circ}\right)$
They also pass through the origin, but at different times!

θ	$\sin \theta$	$\mathrm{r}=1+\sin \theta$	\ominus	$\mathrm{r}=2 \sin \theta$
0	0	1	0	0
30	1/2	3/2	30	1
90	1	2	90	2
120	$\sqrt{3 / 2}$	1.86	120	1.73
180	0	1	180	0
210	-1/2	1/2	210	-1
270	-1	0	270	-2
330	-1/2	1/2	330	-1

The graph of $y=-3 \sin 5 x$ is periodic
with maximum and minimum values of 3 and -3

Therefore, to determine the "tips" of the petals, solve

$$
\begin{aligned}
& 3=-3 \sin 5 \ominus \\
& \text { and } \\
& -3=-3 \sin 5 \ominus
\end{aligned} \begin{aligned}
& \text { (i.e. find values of } \begin{array}{l}
\text { where } r=3 \text { or }-3 \text {) }
\end{array} \\
& \hline
\end{aligned}
$$

$$
\begin{gathered}
3=-3 \sin 5 \ominus \\
-1=\sin 5 \ominus
\end{gathered}
$$

$$
\begin{aligned}
& \text { Let } 5 \ominus=\mathrm{A} \\
& -1=\sin \mathrm{A} \\
& \mathrm{~A}=\frac{3 \pi}{2}, \frac{7 \pi}{2}, \frac{11 \pi}{2}, \frac{15 \pi}{2}, \frac{19 \pi}{2} .
\end{aligned}
$$

therefore,

$$
\ominus=\frac{3 \pi}{10}, \frac{7 \pi}{10}, \frac{11 \pi}{10}, \frac{15 \pi}{10}, \frac{19 \pi}{10} \ldots
$$

$-3=-3 \sin 5 \ominus$
$1=\sin 5 \ominus$

$$
\begin{aligned}
& \text { Let } 5 \ominus=\mathrm{A} \\
& 1=\sin \mathrm{A} \\
& \mathrm{~A}=\frac{\pi}{2}, \frac{5 \pi}{2}, \frac{9 \pi}{2}, \frac{13 \pi}{2}, \frac{17 \pi}{2} \ldots \\
& 5 \ominus
\end{aligned}
$$

therefore,

$$
\ominus=\frac{\pi}{10}, \frac{5 \pi}{10}, \frac{9 \pi}{10}, \frac{13 \pi}{10}, \frac{17 \pi}{10} \ldots
$$

These values of \ominus are where the tips of the petals occur...
Now, we have to determine which ones overlap....

Find the distance between $\left(4, \frac{T T}{4}\right)$ and $\left(3, \frac{T T}{6}\right)$

Method 1: Using Law of Cosines...

Law of Cosines: $c^{2}=a^{2}+b^{2}-2 a b \operatorname{Cos}(c)$

$$
c^{2}=(3)^{2}+(4)^{2}-2(3)(4) \operatorname{Cos}\left(\frac{\Pi}{12}\right)
$$

$$
\mathrm{c}=1.348 \text { (approx.) L/م }
$$

Method 2: Using Rectangular Coordinates $\mathrm{x}=\mathrm{r} \cos \ominus \mathrm{y}=\mathrm{r} \sin \ominus$
$\left(4, \frac{T T}{4}\right) \square(2 \sqrt{2}, 2 \sqrt{2})$
$\left(3, \frac{T T}{6}\right) \square\left(\frac{3 \sqrt{3}}{2}, \frac{3}{2}\right)$

Distance Formula: $d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$
$\mathrm{d}=\sqrt{(.23)^{2}+(1.33)^{2}}$
$\mathrm{d}=1.349$ (approx.)

Complex Product Formula

$$
\left(\mathrm{r}_{1} \operatorname{cis} \ominus_{1}\right)\left(\mathrm{r}_{2} \operatorname{cis} \ominus_{2}\right)=\mathrm{r}_{1} \mathrm{r}_{2} \operatorname{cis}\left(\ominus_{1}+\ominus_{2}\right)
$$

Example: $\quad(5 \operatorname{cis} 30)(6 \mathrm{cis} 40)=30 \mathrm{cis} 70$

De Moivre's Theorem (Product Formula)

$$
\begin{aligned}
{[\mathrm{r} c i s \ominus]^{\mathrm{n}} } & =\mathrm{r}^{\mathrm{n}} \operatorname{cis}(\mathrm{n} \ominus) \\
{[\mathrm{r}(\cos \ominus+i \sin \Theta)]^{\mathrm{n}} } & =\mathrm{r}^{\mathrm{n}}(\cos \mathrm{n} \ominus+i \sin \mathrm{n} \ominus)
\end{aligned}
$$

Example: $(5 \operatorname{cis} 30)^{4}=5^{4} \operatorname{cis}(30 \times 4)=625 \operatorname{cis} 120$

Example: Use Demoive's Theorem to rewrite $(1-i)^{10}$ in polar form and complex form

$$
\begin{aligned}
& \text { convert }(1-i) \text { into polar form: } \sqrt{2} \operatorname{cis}\left(-45^{\circ}\right) \\
& \qquad\left[\sqrt{2} \operatorname{cis}\left(-45^{\circ}\right)\right]^{10}=\sqrt{2}^{10} \operatorname{cis}\left(10 \cdot-45^{\circ}\right) \\
& 32 \operatorname{cis}\left(-450^{\circ}\right) \longmapsto 32 \operatorname{cis}\left(270^{\circ}\right) \square 0-32 i \\
& \text { polar }
\end{aligned}
$$

Complex Roots Theorem

$$
\frac{1}{\mathrm{n}}\left(\cos \ominus+\frac{360^{\circ} \mathrm{k}}{\mathrm{n}}+i \sin \ominus+\frac{360^{\circ} \mathrm{k}}{\mathrm{n}}\right) \quad \text { Notice how it connects roots and complex numbers with trigonometry! }
$$

Example: What are the fourth roots of 81 ? Verify using the complex roots theorem.

$$
\sqrt[4]{81}=3 \quad \text { and } \quad \sqrt[4]{81}=-3 \quad \text { But, if you introduce complex numbers, then } 3 i \text { and }-3 i \text { are fourth roots of } 81
$$

Express the term: $81+0 i$

convert to polar coordinates: $\left(81,0^{\circ}\right)$

Apply root theorem:

$$
\begin{aligned}
& \frac{1}{\mathrm{r}^{\mathrm{n}}}\left(\cos \ominus+\frac{360^{\circ} \mathrm{k}}{\mathrm{n}}+i \sin \ominus+\frac{360^{\circ} \mathrm{k}}{\mathrm{n}}\right) \\
& 81^{\frac{1}{4}}(\cos (0)+i \sin (0))=3 \operatorname{cis}\left(0^{\circ}\right) \quad 3+0 i \\
& 81^{\frac{1}{4}}(\cos (90)+i \sin (90))=3 \operatorname{cis}\left(90^{\circ}\right) \\
& 0+3 i \\
& 81^{\frac{1}{4}}(\cos (180)+i \sin (180))=3 \operatorname{cis}\left(180^{\circ}\right) \\
& -3+0 i \\
& 81^{\frac{1}{4}}(\cos (270)+i \sin (.270))=3 \operatorname{cis}\left(270^{\circ}\right)
\end{aligned} \quad 0-3 i
$$

$1,3,9,27,81 \quad$ (sequence with common ratio 3)
$1,3 i,-9,-27 i, 81$ (sequence with common ratio $3 i$)
$1,-3,9,-27,81 \quad$ (sequence with common ratio -3)
$1,-3 i,-9,27 i, 81$ (sequence with common ratio of $-3 i$)

Method 1: Factoring

$$
\begin{gathered}
\left(x^{2}-4\right)\left(x^{2}+4\right)=0 \\
(x+2)(x-2)(x+2 i)(x-2 i)=0 \\
x=-2,2,2 i,-2 i
\end{gathered}
$$

Example: Solve $\mathrm{x}^{3}-216 i=0$

Method 2: Simplifying

$$
\begin{aligned}
& x^{4}=16 \\
& x^{2}= \pm 4
\end{aligned}
$$

$$
\begin{array}{ll}
\mathrm{x}^{2}=4 & \mathrm{x}^{2}=-4 \\
\mathrm{x}= \pm 2 & \mathrm{x}= \pm 2 i
\end{array}
$$

Method 3: Applying DeMoivre's Theorem

$$
\mathrm{x}=\sqrt[4]{16} \quad \text { convert } 16 \text { into polar/cis form }
$$

Then, apply for $1 / 4$ root

$$
\begin{gathered}
\frac{1}{\mathrm{r}^{\mathrm{n}}} \Rightarrow 16^{\frac{1}{4}}=2 \\
1 / 4 \text { root }--->\frac{2 \pi}{4}=\frac{\pi}{2}
\end{gathered}
$$

$$
\mathrm{x}=\sqrt[3]{216 i} \longrightarrow \mathrm{x}=(216 i)^{\frac{1}{3}}
$$

(216cis $\frac{\pi}{2}$) or $216 \operatorname{cis} 90$
apply formula
(DeMoivre's Theorem)

$$
\left(216 \operatorname{cis} \frac{\pi}{2}\right)^{\frac{1}{3}} \text { or }(216 \operatorname{cis} 90)^{\frac{1}{3}}
$$

Example: Find 4 fourth roots of -81
write in complex polar form $\quad-81 \cdots--->81$ cis 180°

$$
\frac{1}{\mathrm{n}}\left(\cos \ominus+\frac{360^{\circ} \mathrm{k}}{\mathrm{n}}+i \sin \ominus+\frac{360^{\circ} \mathrm{k}}{\mathrm{n}}\right)
$$

apply formula

$$
\begin{array}{ll}
\mathrm{r}=81 & \ominus=180 \quad \mathrm{n}=4 \\
\frac{1}{\mathrm{r}^{4}}=3 & \frac{\ominus}{4}=45
\end{array} \frac{360}{4}=90
$$

3 cis45	3 cis 135	3 cis 225	$3 \operatorname{cis} 315$

$$
\begin{aligned}
& \text { quick check: } \left.(3 \operatorname{cis} 45) \cdots-->\frac{(3 / \sqrt{2}}{2}+\frac{3 \sqrt{2}}{2} i\right) \\
& \begin{aligned}
(3 \operatorname{cis} 45)^{2}= & \left.\left.\frac{(3 / \sqrt{2}}{2}+\frac{3 \sqrt{2}}{2} i\right) \times \frac{(3 / \sqrt{2}}{2}+\frac{3 / \sqrt{2}}{2} i\right) \\
& \frac{9}{2}+\frac{9}{2} i+\frac{9}{2} i-\frac{9}{2}=9 i
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
(3 \operatorname{cis} 45)^{2}(3 \operatorname{cis} 45)^{2}= & 9 i \times 9 i
\end{aligned}=-81 .
$$

Step 1: Convert to Polar (complex) Coordinates

$$
4-4 \sqrt{3} i \quad \sim\left(8,-60^{\circ}\right)
$$

$\mathrm{r}(\cos \theta+i \sin \theta)$ or $\mathrm{r}(\mathrm{cis} \theta)$

$$
8 \operatorname{cis}\left(-60^{\circ}\right)
$$

Step 2: Apply Formula

$$
\begin{array}{lll|}
\mathrm{r}=8 & \mathrm{r}^{\frac{1}{3}}=2 & 2\left(\cos \left(-20^{\circ}\right)+i \sin \left(-20^{\circ}\right)\right. \\
\frac{-60^{\circ}}{3} & =-20^{\circ} & 2\left(\cos \left(100^{\circ}\right)+i \sin \left(100^{\circ}\right)\right.
\end{array} \begin{array}{|l}
2 \operatorname{cis}(-20) \\
2 \operatorname{cis}(100) \\
2 \cos (220) \\
\hline
\end{array}
$$

Step 3: Convert back to Rectangular (complex) Coordinates

$$
\begin{array}{llll|l|}
\mathrm{x}=\mathrm{r} \cos \ominus & 2 \operatorname{cis}(-20) & \mathrm{rcos} \ominus=1.88 & \mathrm{r} \sin \ominus=-.68 & 1.88-.68 i \\
\mathrm{y}=\mathrm{r} \sin \ominus & 2 \operatorname{cis}(100) & \mathrm{r} \cos \ominus=-.35 & \mathrm{r} \sin \ominus=1.97 & -.35+1.97 i \\
& 2 \operatorname{cis}(220) & \mathrm{rcos} \ominus=-1.53 & \mathrm{r} \sin \ominus=-1.29 & -1.53-1.29 i \\
\hline
\end{array}
$$

Step 4: (Optional) Quick Check

$$
\begin{aligned}
& (2 \operatorname{cis}(-20))^{3} \longleftarrow 2^{3} \operatorname{cis}(3 \times(-20))=8 \operatorname{cis}(-60) \\
& (-.35+1.97 i)^{3} \longleftrightarrow(-.35+1.97 i)(-.35+1.97 i)(-.35+1.97 i)=4-4 \sqrt{3} i
\end{aligned}
$$

Example: Expand the following $(2+3 i)^{5}$

Method 1: DeMoivre's Theorem
Step 1: convert into polar cis form

$$
\begin{aligned}
& \mathrm{r}=\sqrt{13} \\
& \ominus=56.3099 \\
& \sqrt{13} \text { cis } 56.3099^{\circ}
\end{aligned}
$$

Step 2: apply DeMoivre's Theorem

$$
\begin{gathered}
{[\mathrm{r} \operatorname{cis} \ominus]^{\mathrm{n}}=\mathrm{r}^{\mathrm{n}} \operatorname{cis}(\mathrm{n} \ominus)} \\
{[\sqrt{13} \text { cis } 56.3099]^{5}=169 \sqrt{13} \text { cis } 281.55}
\end{gathered}
$$

Step 3: convert to rectangular complex form

$121-597 i$

Method 2: Binomial Expansion Theorem

$$
(2+3 i)^{5}
$$

Step 1: Apply first part of binomial expansion

$$
2^{5}(3 i)^{0}+2^{4}(3 i)^{1}+2^{3}(3 i)^{2}+2^{2}(3 i)^{3}+2^{1}(3 i)^{4}+2^{0}(3 i)^{5}
$$

Step 2: Add the coefficients (using Pascal's triangle or combinations)

$$
\begin{gathered}
\binom{5}{0} 2^{5}(3 i)^{0}+\binom{5}{1} 2^{4}(3 i)^{1}+\binom{5}{2} 2^{3}(3 i)^{2}+\binom{5}{3} 2^{2}(3 i)^{3}+\binom{5}{4} 2^{1}(3 i)^{4}+\binom{5}{5} 2^{0}(3 i)^{5} \\
32+80(3 i)+80\left(9 i^{2}\right)+40\left(27 i^{3}\right)+10\left(81 i^{4}\right)+243 i^{5} \\
32+240 i-720-1080 i+810+243 i
\end{gathered}
$$

$$
121-597 i
$$

A Valentine's Day Flower that lasts forever... (as long as you recharge the batteries!)
I. Convert the following:

1) Rectangular to Polar
A) $(3,3)$
B) $(0,-2)$
C) $(-1, \sqrt{3})$
2) Polar to Rectangular
A) $\left(6,90^{\circ}\right)$
B) $(8, \pi)$
C) $\left(-2,60^{\circ}\right)$
II. Plot $\left(3,120^{\circ}\right)$ on the graph. Identify two other coordinates that have the same location.

III. Sketch $\mathrm{r}=1+\sin \ominus$

Give the rectangular equation.

Polar and Rectangular Quick Quiz (continued)
IV: Complex Numbers

1) $\mathrm{Z}_{1}=3-i \quad \mathrm{Z}_{2}=4+4 i$
A) Express Z_{1} and Z_{2} in polar form
B) Find $Z_{1} Z_{2}$
C) Determine $\left|Z_{1}\right|$ and $\left|Z_{2}\right|$
2) $Z=2 \operatorname{Cis} 120^{\circ}$
A) Find z^{2}
B) Find Z^{5}
C) Express the answers in A) and B) in Complex form; and, graph.

Polar and Rectangular Quick Quiz (continued)
Express each product in polar and rectangular form.
A) $\left(2 \operatorname{Cis} 115^{\circ}\right)\left(3 \operatorname{Cis} 65^{\circ}\right)$
B) $\left(8 \operatorname{Cis} 60^{\circ}\right)\left(\frac{1}{2} \operatorname{Cis}\left(-120^{\circ}\right)\right)$
V. Compute using 2 methods - Verify solutions from A) and B) are equivalent!
A) $(1-i \sqrt{3})(1-i \sqrt{3})$
B) Convert to polar form (CIS) and solve.
A) $\frac{6 \operatorname{Cis} 30^{\circ}}{3 \operatorname{Cis} 150^{\circ}}$
B) Convert to Complex/Rectangular Form a $+\mathrm{b} i$. then, divide to confirm the answer in A)

Solutions - \rightarrow
I. Convert the following:

1) Rectangular to Polar
A) $(3,3)$
B) $(0,-2)$
C) $(-1, \sqrt{3})$
$\begin{array}{rlr}x^{2}+y^{2}=r^{2} & \text { Tan } \ominus & =\frac{y}{x} \\ 9+9=r^{2} & & \\ r=3 \sqrt{3} & & =\frac{3}{3}\end{array} \quad\left(3 \sqrt{3}, 45^{\circ}\right)$
$\mathrm{r}=3 \sqrt{3}$

$$
\ominus=45^{\circ}
$$

2) Polar to Rectangular

A) $\left(6,90^{\circ}\right)$
B) $(8, \pi)$
C) $\left(-2,60^{\circ}\right)$

$x=r \cos \ominus$
$x=8(-1)=-8$
$y=r \sin \ominus$
$y=8(0)=0$
$(-8,0)$

$$
\begin{aligned}
& \mathrm{x}=-2 \cos 60 \\
&=-2(1 / 2)=-1 \\
& \mathrm{y}=-2 \sin 60 \\
&=-2(\sqrt{3} / 2)=-\sqrt{3} \\
&(-1,-\sqrt{3})
\end{aligned}
$$

II. Plot $\left(3,120^{\circ}\right)$ on the graph. Identify two other coordinates that have the same location.
$\left(3,480^{\circ}\right)$
$\left(-3,-60^{\circ}\right)$
$\left(3,-240^{\circ}\right)$
are 3 possibilities....

III. Sketch $r=1+\sin \ominus$

\ominus	r
0	1
30	$3 / 2$
60	$(2+/ \sqrt{3}) / 2$
90	2
120	$(2+\sqrt{3}) / 2$
150	$3 / 2$
180	1
210	$1 / 2$
240	$(2-\sqrt{3}) / 2$
270	0
330	$1 / 2$
360	1

Give the rectangular equation.

$\sin \varphi=\frac{y}{r}$

$$
\begin{aligned}
& r^{2}=x^{2}+y^{2} \\
& r=\sqrt{x^{2}+y^{2}}
\end{aligned}
$$

(substitute and simplify)

$$
\begin{gathered}
r=1+\frac{y}{r} \\
r^{2}=r+y \\
x^{2}+y^{2}=\sqrt{x^{2}+y^{2}}+y
\end{gathered}
$$

IV: Complex Numbers

1) $\mathrm{Z}_{1}=3-i \quad \mathrm{Z}_{2}=4+4 i$
A) Express Z_{1} and Z_{2} in polar form $Z=\sqrt{10} \mathrm{Cis}\left(341.6^{\circ}\right)$
$Z=4 / \sqrt{2} \operatorname{Cis} 45^{\circ}$
B) Find $Z_{1} Z_{2}$

$4 \sqrt{20} \mathrm{Cis}\left(386.6^{\circ}\right)=$

$$
8 \sqrt{5} \operatorname{Cis}\left(26.6^{\circ}\right)
$$

$$
\begin{aligned}
\tan \ominus & =-1 / 3 \\
\ominus & =-18.4^{\circ} \\
& =341.6^{\circ}
\end{aligned}
$$

C) Determine $\left|Z_{1}\right|$ and $\left|Z_{2}\right|$

$$
\left|Z_{1}\right|=\sqrt{3^{2}+(-1)^{2}}=\sqrt{10} \quad\left|Z_{2}\right|=4 \sqrt{2}
$$

2) $Z=2 \operatorname{Cis} 120$
A) Find z^{2}

$$
\left(2 \operatorname{Cis} 120^{\circ}\right)\left(2 \operatorname{Cis} 120^{\circ}\right)=(2 \times 2) \operatorname{Cis}(120+120)=4 \operatorname{Cis} 240^{\circ}
$$

B) Find Z^{5}

$$
2^{5} \operatorname{Cis}(5 \times 120)=32 \operatorname{Cis}\left(600^{\circ}\right)=32 \operatorname{Cis} 240^{\circ}
$$

C) Express the answers in A) and B)
in Complex form; and, graph.

2Cis 120

$$
=(-1,-\sqrt{3})
$$

$$
\begin{array}{ll}
\mathrm{r}=4 & \mathrm{r}=32 \\
\mathrm{x}=\mathrm{r} \cos 240 & \mathrm{x}=32 \cos 240 \\
\mathrm{x}=4(-1 / 2)=-2 & \mathrm{x}=32(-1 / 2)=-16 \\
y=r \sin 240 & \mathrm{y}=32 \sin 240 \\
\mathrm{y}=4(-/ \sqrt{3} / 2)=-2 \sqrt{3} & \mathrm{y}=32(-\sqrt{3} / 2)=-16 / \sqrt{3} \\
& (-2,-2 \sqrt{3}) \\
& (-16,-16 / \sqrt{3})
\end{array}
$$

Polar and Rectangular Quick Quiz (continued)

SOLUTIONS

Express each product in polar and rectangular form.
A) $\left(2 \operatorname{Cis} 115^{\circ}\right)\left(3 \operatorname{Cis} 65^{\circ}\right)$
$2 \cdot 3 \operatorname{Cis}(115+65)=$
$6 \mathrm{Cis}\left(180^{\circ}\right)$ (Polar)

$$
Z_{1} Z_{2}=r_{1} r_{2} \operatorname{Cis}\left(\ominus_{1}+\ominus_{2}\right)
$$

B) $\left(8 \operatorname{Cis} 60^{\circ}\right)\left(\frac{1}{2} \operatorname{Cis}\left(-120^{\circ}\right)\right)$
$8 \cdot \frac{1}{2} \operatorname{Cis}(60+$
$4 \operatorname{Cis}(-60)=$
$4 \operatorname{Cis}\left(300^{\circ}\right)$
(note: 300 is the coterminal angle of -60 that is between

$$
0 \text { and 360) }
$$

$$
\begin{aligned}
& 4(\cos 300+i \sin 300)= \\
& 4\left(\frac{1}{2}-i \frac{\sqrt{3}}{2}\right)
\end{aligned}
$$

V. Compute using 2 methods - Verify solutions from A) and B) are equivalent!
A) $(1-i \sqrt{3})(1-i \sqrt{3})$
B) Convert to polar form (CIS) and solve.
"FOIL" $\quad 1-i \sqrt{3}-i \sqrt{3}+i^{2}(3)$

$$
\begin{aligned}
& 1-2 \mathrm{i} \sqrt{3}-3 \\
& -2-i 2 \sqrt{3}
\end{aligned}
$$

$$
\begin{array}{cc}
1-i \sqrt{3} & \mathrm{r}=\sqrt{(1)^{2}+(-\sqrt{3})^{2}}=2 \\
\tan \ominus=\frac{\mathrm{y}}{\mathrm{x}} & \ominus=300^{\circ}
\end{array}
$$

$$
(2 \mathrm{CIS} 300)(2 \mathrm{CIS} 300)=
$$

$$
4 \mathrm{CIS} 600^{\circ}=-360^{\circ}
$$

$$
\tan \ominus=\frac{\bar{N} \sqrt{3}}{1}
$$

$$
1-i \sqrt{3}=2 \operatorname{Cis} 300^{\circ}
$$

$4 \mathrm{Cis} 240^{\circ}$

$$
\begin{aligned}
& 4(\cos 240+i \sin 240) \\
& 4(-1 / 2-i \sqrt{3} / 2) \\
& -2-i 2 \sqrt{3}
\end{aligned}
$$

A) $\frac{6 \operatorname{Cis} 30^{\circ}}{3 \operatorname{Cis} 150^{\circ}}$
$\frac{Z_{1}}{Z_{2}}=\frac{r_{1}}{r_{2}} \operatorname{CIS}\left(\ominus_{1}-\ominus_{2}\right)$
$=\frac{6}{3} \operatorname{CIS}(30-150)$
$=2 \operatorname{Cis}(-120)$

$$
3 \sqrt{3}+3 i
$$

B) Convert to Complex/Rectangular Form $a+b i$. then, divide to confirm the answer in A)

$$
3 \operatorname{Cis} 150=\quad \frac{3 \sqrt{3}+3 i}{\frac{1}{2}(-3 \sqrt{3}+3 i)} \text { multiply by } \frac{2}{2}
$$

$$
\frac{6 \sqrt{3}+6 i}{(-3 \sqrt{3}+3 i)} \frac{(-3 \sqrt{3}-3 i)}{(-3 \sqrt{3}-3 i)} \frac{\begin{array}{l}
\text { mult. by } \\
\text { conjugate } \\
\text { conjugate }
\end{array}}{\text { 位 }}
$$

$$
\frac{-3 \sqrt{3}}{2}+\frac{3 i}{2} \quad \frac{-54+18-18 \sqrt{3} i-18 \sqrt{3} i}{27+9}
$$

$$
\frac{1}{2}(-3 \sqrt{3}+3 i)
$$

Thanks for downloading this packet. (Hope it helps!)
If you have questions, suggestions, or feedback, let us know.
Cheers

Also, at TES, and TeachersPayTeachers

$$
\begin{aligned}
& (4+3 i)-(2-5 i) \\
& 2+8 i \\
& (2+5 i)(3-i) \\
& \begin{array}{l}
6-2 i+15 i-5 i^{2} \\
6+13 i-5(-1)
\end{array} \\
& \begin{array}{l}
6-2 i+15 i-5 i^{2} \\
6+13 i-5(-1)
\end{array} \\
& 11+13 i \\
& \frac{4}{2-3 i} \\
& \text { multiply by conjugate to simplify into } \mathrm{a}+\mathrm{b} i \text { form } \\
& \frac{4}{2-3 i} \cdot \frac{2+3 i}{2+3 i}=\frac{8+12 i}{4+6 i-6 i-9 i^{2}}=\frac{8+12 i}{4-9 i^{2}}=\frac{8+12 i}{13} \square \frac{8}{13}+\frac{12}{13} i \\
& i^{17} \\
& \text { Reducing } i^{\mathrm{n}} \text { to its lowest term } \\
& i^{16} \cdot i^{1} \\
& 1 \cdot i \\
& { }^{i} \\
& x^{2}+2 x+7=0 \\
& \text { Solving equations with Quadratic Formula } \\
& \mathrm{x}=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}} \\
& x=\frac{-2 \pm \sqrt{2^{2}-4(1)(7)}}{2(1)}=\frac{-2 \pm \sqrt{-24}}{2}=\frac{-2 \pm 2 i \sqrt{6}}{2} \Rightarrow-1 \pm i \sqrt{6}
\end{aligned}
$$

$$
\begin{array}{ll}
4 \mathrm{x}^{2}+27=11 \quad & \text { Solving algebraic equations } \\
& \\
4 \mathrm{x}^{2}=-16 \\
\mathrm{x}^{2}=-4 \quad \sqrt{\mathrm{x}^{2}}=\sqrt{-4} \\
\mathrm{x}= \pm 2 i
\end{array}
$$

Imaginary \& Complex Numbers: Quick Quiz

Part I: Simplify

1) $\mathrm{i}^{2}=$
2) $\mathrm{i}^{51}=$
3) $i^{8}=$
4) $\mathrm{i}^{-5}=$

Part II: Simplify

1) $\sqrt{-25}=$
2) $\sqrt{-72}=$
3) $\sqrt[3]{-8}=$
4) $\sqrt{-4 a b^{3}}=$

Part III: Complex numbers
Given: $\quad w=3 i+7$
$v=2 i-5$
Find:

1) $w+v$
2) $3 w$
3) vw

Solutions must be in standard form: $\mathrm{a}+\mathrm{bi}$
4) w^{2}
5) $\frac{1}{\mathrm{~V}}$
6) v^{3}

Part IV: Solve

1) $x^{2}+3 x+10=0$
2) $3(x+8)^{2}=-15$
3) $\frac{3 \mathrm{i}+4}{4 \mathrm{i}-9}=$
4) $(5 i-6)^{2}=$
5) $(7-8 \mathrm{i})(7+8 \mathrm{i})=$

SOLUTIONS

Part I: Simplify

1) $\sqrt{-25}=5 \mathrm{i}$
2) $\sqrt{-72}=\sqrt{(-1)(2)(36)}$
3) $\sqrt[3]{-8}=-2$
4) $\sqrt{-4 a b^{3}}=2 b i \sqrt{a b}$

$$
6 \mathrm{i} \sqrt{2}
$$

$(-2)(-2)(-2)=-8$

$$
(-2)(-2)(-2)=-8
$$

Part III: Complex numbers

Given: $\mathrm{w}=3 \mathrm{i}+7$ $v=2 i-5$

Find:

1) $w+v$

$$
\begin{array}{r}
3 \mathrm{i}+7 \\
2 \mathrm{i}-5 \\
\hline \hline 5 \mathrm{i}+2 \\
\hline
\end{array}
$$

2) $3 w \quad 3(3 i+7)$

$$
9 i+21
$$

Solutions must be in standard form: $\mathrm{a}+\mathrm{bi}$

$$
\begin{array}{ll}
\text { 4) } \mathrm{w}^{2} & \text { 5) } \frac{1}{v} \\
(3 \mathrm{i}+7)(3 \mathrm{i}+7) & \frac{1}{(2 i-5)} \cdot \frac{(2 i+5)}{(2 i+5)}= \\
9 \mathrm{i}^{2}+21 \mathrm{i}+21 \mathrm{i}+49 & \frac{2 \mathrm{i}+5}{4 \mathrm{i}^{2}-25}=\frac{5+2 \mathrm{i}}{-29}= \\
40+42 \mathrm{i} & \frac{-5}{29}-\frac{2}{29} \mathrm{i}
\end{array}
$$

1) $\mathrm{i}^{2}=-1$
2) $\mathrm{i}^{51}=\mathrm{i}^{48} \cdot \mathrm{i}^{3}$
3) $\mathrm{i}^{8}=1$

$$
=1 \cdot \mathrm{i}^{3}=-\mathrm{i}
$$

Part II: Simplify
4) $i^{-5}=i^{-8} \cdot i^{3}$

$$
=\frac{1}{\mathrm{i}^{8}} \cdot \mathrm{i}^{3}
$$

$$
=\frac{1}{1} \cdot-\mathrm{i}=-\mathrm{i}
$$

3) vw

$$
\begin{aligned}
& (2 i-5)(3 i+7) \\
& 6 i^{2}-15 i+14 i-35 \\
& 6(-1)-i-35=-41-i
\end{aligned}
$$

6) $\mathrm{v}^{3}=(2 i-5)(2 \mathrm{i}-5)(2 \mathrm{i}-5)$

$$
\begin{aligned}
(2 \mathrm{i}-5)(2 \mathrm{i}-5) & =-4-20 \mathrm{i}+25 \\
& =21-20 \mathrm{i}
\end{aligned}
$$

then, $(2 i-5)(-20 i+21)$

$$
-40 \mathrm{i}^{2}+100 \mathrm{i}+42 \mathrm{i}-105
$$

Part IV: Solve

$$
=40+142 \mathrm{i}-105=-65+142 \mathrm{i}
$$

1) $x^{2}+3 x+10=0$
(use quadratic formula)
$\frac{-3 \pm \sqrt{9-4(1)(10)}}{2(1)}=$
2) $3(x+8)^{2}=-15$
$(x+8)^{2}=-5$

$$
(x+8)= \pm \sqrt{-5}
$$ $\frac{-3 \pm i \sqrt{31}}{2}$

5) $(7-8 \mathrm{i})(7+8 \mathrm{i})=$
6) $\frac{3 \mathrm{i}+4}{4 \mathrm{i}-9}=$

$$
\frac{3 i+4}{4 i-9} \cdot \frac{4 i+9}{4 i+9}=
$$

$$
x=-8 \pm i / \sqrt{5}
$$

$$
\frac{12 i^{2}+16 i+27 i+36}{16 i^{2}-81}=
$$

> 4) $(5 i-6)^{2}=$
> $(5 i-6)(5 i-6)=$
> $25 i^{2}-30 i-30 i+36=$
> $-25-60 i+36=$
> $11-60 i$

$$
\frac{24+43 \mathrm{i}}{-97}=\frac{-24}{97}-\frac{43 \mathrm{i}}{97}
$$

