Geometry

Midpoint and Distance

Notes, Applications, and Practice Quiz (\& Solutions)

Topics include number lines, cartesian plane, formulas, triangles, circles, and more.

Midpoint and Distance: Notes, Examples, and Formulas

Midpoint

What is it? The "half-way point between two locations".
It is equidistant to each point.

Number line: The midpoint between 3 and 11 is 7.

7 is four units from both 3 and 11.

The midpoint is similar to the "average"

$$
\frac{P_{1}+P_{2}}{2}=\text { Midpoint }
$$

The midpoint between -6 and 3 is $\frac{-3}{2}$

$$
\frac{-6+3}{2}=\frac{-3}{2}
$$

The midpoint extends to the Cartesian Plane:
Simply find the midpoint of the X values. And, the midpoint of the Y values.

The midpoint of the X Values:

$$
\frac{1+5}{2}=3
$$

The midpoint of the Y Values:

$$
\frac{2+4}{2}=3
$$

Where does the perpendicular bisector pass through $\overline{\mathrm{RS}}$?

Given $A B$ with midpoint M : $A=(-3,1) \quad M=(1,3) \quad$ What is B ?

Find the midpoint of $\overline{\mathrm{RS}}$:
X coordinate: $\frac{3 / 2+4}{2}=\frac{11 / 2}{2}=\frac{11}{4}$

Y coordinate: $\frac{1+3}{2}=2$

"Formula" Method

$$
\begin{array}{ll}
\frac{\mathrm{X}_{\mathrm{A}}+\mathrm{X}_{\mathrm{B}}}{2}=\mathrm{X}_{\mathrm{M}} & \frac{\mathrm{Y}_{\mathrm{A}}+\mathrm{Y}_{\mathrm{B}}}{2}=\mathrm{Y}_{\mathrm{M}} \\
\frac{-3+\mathrm{X}_{\mathrm{B}}}{2}=1 & \frac{1+\mathrm{Y}_{\mathrm{B}}}{2}=3 \\
\mathrm{X}_{\mathrm{B}}=5 & (5,5)
\end{array}
$$

"Travel" Method
Start at the endpoint. Determine how far you "travel" to the midpoint. Then, add the same amount.

$$
\begin{gathered}
\mathrm{A} \\
(-3,1)
\end{gathered} \begin{gathered}
\mathrm{M} \\
(1,3)
\end{gathered}
$$

X value increased 4 units..
Y value increased 2 units..

$(5,5)$

Midpoint and Distance: Notes, Examples, and Formulas

Distance

What is it? The space between 2 points.
The length of the line segment connecting two points.

Number Line:

$$
\begin{aligned}
\text { Length of } \overline{\mathrm{AB}} & =6 \text { units } & \begin{aligned}
& \mathrm{AC}=14 \text { unitstance between } \mathrm{A} \text { and } \mathrm{B} \text { is } 6 \\
& \text { between } A \text { and } C \text { is } 14
\end{aligned}
\end{aligned}
$$

Cartesian Plane:

The distance between D and E is 3 units...
$(3,2),(4,2),(5,2)$, and $(6,2)$
And, the distance between E and F is 4 units... $(6,2),(6,3),(6,4),(6,5),(6,6)$

So, what is the distance between D and F ?
(And, it is not $7!$!)

Pythagorean Theorem $a^{2}+b^{2}=c^{2}$

Notice, in this case, that the points can be vertices of a right triangle..

$9+16=25$

Therefore, the length of $\overline{\mathrm{DF}}$ (i.e. distance between D and F)
$=5$

$$
d=\sqrt{\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)^{2}+\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)^{2}}
$$

Distance Formula

Find the distance between $(-2,5)$ and $(4,7)$.

$$
\begin{aligned}
& \text { Using Distance Formula: } \\
d & =\sqrt{(-2-4)^{2}+(5-7)^{2}} \\
= & \sqrt{(-2-4)^{2}+(5-7)^{2}} \\
& =\sqrt{36+4}=2 \sqrt{10}
\end{aligned}
$$

Using Pythagorean Theorem:

A vertical line drawn from $(4,7)$ intersects a horizontal line from $(-2,5)$ at $(4,5)$.. These form a right triangle!

Then, using the pythagorean theorem, the hypotenuse is $2 \sqrt{10}$

Distance Formula and Pythagorean Theorem

Example: The distance between $(3,4)$ and $(\mathrm{x}, 7)$ is 5 units. Find x .

Using the distance formula:

$$
\mathrm{d}=/ \sqrt{\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)^{2}+\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)^{2}}
$$

$5=\sqrt{(3+x)^{2}+(4-7)^{2}}$
$25=(3-x)^{2}+9$
$16=(3-x)^{2}$
$\pm 4=3-\mathrm{x}$
$\mathrm{x}=-1$ or 7

Example: The length of segment AB is 20 .
If the coordinate of A is $(5,1)$, and the coordinate of B is $(-6, y)$, what is b ?

Using the distance formula:

$$
\begin{aligned}
d & =\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}} \\
20 & =\sqrt{(-6-5)^{2}+(y+1)^{2}} \\
400 & =121+(y+1)^{2} \\
\pm \sqrt{279} & =y-1
\end{aligned}
$$

$$
\mathrm{y}=1 \pm \sqrt{279}
$$

Solving Graphically (Pythagorean Theorem)

I. Verify the following

1) The triangle is isosceles

Def. of isosceles: triangle with 2 congruent sides.

Midpoint:
Midpoint of $\overline{\mathrm{AC}}$

$$
\left\langle\frac{-2+9}{2}, \frac{2+10}{2}\right)
$$

$(3.5,6)$
since B is the midpoint of $\overline{\mathrm{AC}}, \quad \overline{\mathrm{AB}}=\overline{\mathrm{BC}}$
II. My dog and I go for a hike in a field. We leave the car and walk due north

4 miles. Then, we turn 90° to the right and continue 6 miles due east.
We get hungry and decide to go straight back to the car. How far must we go?

distance of $\overline{\mathrm{AB}}$

$$
\begin{aligned}
& \sqrt{(6-0)^{2}+(4-0)^{2}} \\
& =\sqrt{52}=2 \sqrt{13}
\end{aligned}
$$

III. Write the standard form of a circle with endpoints $(-2,1)$ and $(-8,-5)$

Step 1: Sketch the figure

Step 2: Establish the strategy

The standard form of a circle is

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

where r is the radius and (h, k) is the center.

We need the center: midpoint of the diameter..

And, radius: distance between center and endpoint (or, $1 / 2$ distance of diameter)

Step 3: Solve
Center: Find the midpoint of endpoints $(-2,1)$ and $(-8,-5)$

$$
\left(\frac{-2+(-8)}{2}, \frac{1+(-5)}{2}\right)=(-5,-2)
$$

Diameter: Distance between endpoints $(-2,1)$ and $(-8,-5)$

$$
\text { distance }=\sqrt{(-2-(-8))^{2}+(1-(-5))^{2}}=\sqrt{36+36}=6 \sqrt{2}
$$

Or, Radius: Distance between center $(-5,-2)$ and endpoint $(-8,-5)$

$$
\text { distance }=\sqrt{(-5-(-8))^{2}+(-2-(-5))^{2}}=\sqrt{9+9}=3 \sqrt{2}
$$

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

$$
(\mathrm{x}-(-5))^{2}+(\mathrm{y}-(-2))^{2}=3 \sqrt{2}^{2}
$$

$$
(x+5)^{2}+(y+2)^{2}=18
$$

Eventually, Noah realizes that this assignment was NOT a geometry construction

Practice Review Quiz

Answer the following Questions. (Suggestion: Plot points and use graphs to verify solutions)
I. Midpoint

1) Find the midpoint between:
A) $(0,1)$ and $(8,3)$
B) $(11,-4)$ and $(-6,-4)$
C) ($-17,-7$) and ($-7,-6$)
2) Answer the following:
A) The midpoint of $A B$ is $(3,-3)$. If point $A=(-2,-4)$, what is point B ?
B) The endpoint of a segment is $(5,-5)$. The midpoint of the segment is $(9,-5)$. What is the other endpoint?
II. Distance
3) What is the distance between:
A) $(3,6)$ and $(7,9)$
B) $(7,-1)$ and $(7,7)$
C) $(-4,5)$ and $(1,12)$
4) The distance d between two points is given. Find the value(s) of b :
A) $(0, b)$ and $(3,1) ; d=5$
B) $(b,-7)$ and $(-5,1) ; d=10$
C) $(-9,-2)$ and $(b, 5) ; \quad d=7$

Distance and Midpoint Review Quiz (continued)

III. Geometry application
A) Using the distance formula, determine whether the following are vertices of a right triangle (i.e. Distances and converse of Pythagorean Theorem)

1) $(5,8)(5,2)$ and $(0,2)$
2) $(3,-1)(1,4)$ and $(-3,0)$
3) $(-1,1)(2,4)$ and $(3,-3)$
B) Find the perpendicular bisectors of the following line segments: (express your answer in point slope form)
4) Line segment $\overline{\mathrm{AB}}$, where $\mathrm{A}=(4,7)$ and $\mathrm{B}=(11,6)$
5) Line segment $\overline{\mathrm{CD}}$, where $\mathrm{C}=(3,-9)$ and $\mathrm{D}=(-6,-9)$

Answer the following Questions. (Suggestion: Plot points and use graphs to verify solutions)
I. Midpoint

1) Find the midpoint between:
A) $(0,1)$ and $(8,3) \quad\left(\frac{0+8}{2}, \frac{1+3}{2}\right)=(4,2)$
B) $(11,-4)$ and $(-6,-4) \quad$ average of x terms: $(11+(-6)) / 2=\frac{5}{2}$

$$
(5 / 2,-4)
$$

y terms are the same (no vertical change)

2) Answer the following:
A) The midpoint of $A B$ is $(3,-3)$. If point $A=(-2,-4)$, what is point B ?

$$
\begin{aligned}
(-2,-4) & --->(3,-3) \\
& \mathrm{x} \text { add } 5 ; \text { y add } 1
\end{aligned}
$$

B) The endpoint of a segment is $(5,-5)$. The midpoint of the segment is $(9,-5)$. What is the other endpoint?
II. Distance

$$
(9,-5)=\left(\frac{5+x}{2}, \frac{-5+y}{2}\right) \quad x=13 \quad y=-5 \quad(13,-5)
$$

1) What is the distance between:

A) $(3,6)$ and $(7,9)$

$$
d=\sqrt{(7-3)^{2}+(9-6)^{2}}=\sqrt{16+9}=5
$$

B) $(7,-1)$ and $(7,7)$

$$
\text { Vertical line connecting both points: } 8 \text { units from }-1 \text { to } 7
$$

C) $(-4,5)$ and $(1,12)$

$$
d=\sqrt{(-4-1)^{2}+(5-12)^{2}}=\sqrt{25+49}=\sqrt{74}
$$

$$
d=\sqrt{\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)^{2}+\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)^{2}}
$$

2) The distance d between two points is given. Find the value(s) of b :

$$
\begin{array}{ccc}
\text { A) }(0, b) \text { and }(3,1) ; d=5 & 25=9+(\mathrm{b}-1)^{2} & \\
5=\sqrt{(0-3)^{2}+(\mathrm{b}-1)^{2}} \quad \begin{array}{l}
\text { (square both sides } \\
\text { and solve) }
\end{array} & 16=\mathrm{b}^{2}-2 \mathrm{~b}+1 & (\mathrm{~b}-5)(\mathrm{b}+3)=0 \\
\mathrm{~b}^{2}-2 \mathrm{~b}-15=0 & \mathrm{~b}=-3 \text { and } 5 \\
\hline
\end{array}
$$

B) $(b,-7)$ and $(-5,1) ; d=10$

$$
10=\sqrt{(b+5)^{2}+(-7-1)^{2}}
$$

$$
\begin{array}{ll}
100=b^{2}+10 b+25+64 \\
b^{2}+10 b-11=0 & b=-11 \text { and } 1 \\
(b+11)(b-1)=0 &
\end{array}
$$

C) $(-9,-2)$ and $(b, 5) ; \quad d=7$

$$
7=\sqrt{(-9-b)^{2}+(-2-5)^{2}}
$$

$$
\begin{array}{lr}
49=81+18 b+b^{2}+49 & \\
0=81+18 b+b^{2} & b=-9 \\
(b+9)(b+9)=0 &
\end{array}
$$

III. Geometry application
A) Using the distance formula, determine whether the following are vertices of a right triangle (i.e. Distances and converse of Pythagorean Theorem)

1) $(5,8)(5,2)$ and $(0,2)$

A B C
C

$$
\begin{aligned}
d \mathrm{AB} & =6 \\
d \mathrm{BC} & =5 \\
d \mathrm{AC} & =\sqrt{(5-0)^{2}+(8-2)^{2}} \\
& =\sqrt{25+36}=\sqrt{61}
\end{aligned}
$$

$\mathrm{AB}=6$
$B C=5$
$\mathrm{AC}=\sqrt{61}$

$$
\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}^{2}
$$

$$
36+25=61
$$

$$
61=61
$$

2) $(3,-1)(1,4)$ and $(-3,0)$

E F
G

$$
\begin{aligned}
d \mathrm{EF} & =\sqrt{(3-1)^{2}+(-1-4)^{2}} \\
& =\sqrt{29} \\
d \mathrm{FG} & =\sqrt{(1+3)^{2}+(4-0)^{2}} \\
& =\sqrt{32}
\end{aligned}
$$

$$
\begin{aligned}
d \mathrm{EG} & =\sqrt{(3+3)^{2}+(-1-0)^{2}} \\
& =\sqrt{37}
\end{aligned}
$$

$$
\mathrm{EF}^{2}+\mathrm{FG}^{2}=\mathrm{EG}^{2}
$$

$$
29+32=37
$$

3) $(-1,1)(2,4)$ and $(3,-3)$

$$
61 \neq 37
$$

M $\quad \mathrm{N}$
P

$$
\begin{array}{lr}
d \mathrm{MN}=\sqrt{18} & \mathrm{MN}^{2}+\mathrm{MP}^{2}=\mathrm{NP}^{2} \\
d \mathrm{NP}=\sqrt{50} & 18+32=50 \\
d \mathrm{MP}=\sqrt{32} &
\end{array}
$$

```
50=50 L~
Yes! Vertices of a right triangle
```

B) Find the perpendicular bisectors of the following line segments: (express your answer in point slope form)

1) Line segment $\overline{\mathrm{AB}}$, where $\mathrm{A}=(4,7)$ and $\mathrm{B}=(11,6)$

Find midpoint of $\overline{\mathrm{AB}}$:

$$
\left(\frac{4+11}{2}, \frac{7+6}{2}\right)=(15 / 2,13 / 2)
$$

To find perpendicular line, find slope of $\overline{\mathrm{AB}}$:
$\mathrm{m}=\frac{7-6}{4-11}=\frac{-1}{7}$
slope of perpendicular line is 7 .
(opposite reciprocal)
2) Line segment $\overline{\mathrm{CD}}$, where $\mathrm{C}=(3,-9)$ and $\mathrm{D}=(-6,-9)$

Midpoint of $\overline{\mathrm{CD}}$ is ($-3 / 2,-9$)
Segment $\overline{\mathrm{CD}}$ is horizontal!
Therefore, the perpendicular bisector will be vertical...

$$
x=\frac{-3}{2}
$$

Thanks for visiting the site. (Hope it helped!)
If you have questions, suggestions, or requests, let us know!
Cheers.

One more question
The distance between A and B is 10 units.
If A is $(3,11)$ and B is $(x, 5)$, then what is x ?

The distance between A and B is 10 .
If A is $(3,11)$ and B is $(x, 5)$, what is x ?

$$
\begin{aligned}
\text { distance } & =\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}} \\
10 & =\sqrt{(3-x)^{2}+(11-5)^{2}} \\
100 & =(3-x)^{2}+36 \\
64 & =(3-x)^{2} \\
\pm 8 & =3-x \\
x & =-5 \text { or } 11
\end{aligned}
$$

