Rotation of Axes: Conics
Formulas, Examples, and practice test (with solutions)

Rotation of Axes

Determine the $x^{\prime} y^{\prime}$ coordinates of a given point if the coordinate axes are rotated through a given angle.
Example: $(0,1) 30^{\circ}$

```
x' = xcos \ominus+ysin}
y'}=-x\operatorname{sin}\ominus+y\operatorname{cos}
```


$x^{\prime}=0 \cos (30)+1 \sin (30)$
$y^{\prime}=-0 \sin (30)+1 \cos (30)$

$x^{\prime}=1 / 2$
$\mathrm{y}^{\prime}=\sqrt{3} / 2$

The coordinates of the point related to the xy-axes $(0,1)$
The coordinates of the point related to the rotated $x^{\prime} y^{\prime}$-axis $(1 / 2, / \sqrt{3} / 2)$

Example: $(3,1) 70^{\circ}$

$$
\begin{array}{ll}
\mathrm{x}^{\prime}=3 \cos (70)+1 \sin (70) & \mathrm{x}^{\prime}=1.97 \\
\mathrm{y}^{\prime}=-3 \sin (70)+1(\cos 70) & \mathrm{y}^{\prime}=-2.48
\end{array}
$$

The coordinates of the point related to the $x y$-axes $(3,1)$
The coordinates of the point related to the rotated $x^{\prime} y^{\prime}$-axis $(1.97,-2.48)$

Rotation of Axes

Determine the original xy-coordinates from a given point in a rotated $x^{\prime} y^{\prime}$-coordinate axes.
Example: $(3,4)$ inside a 30 degree rotated xy-axes

$$
\begin{aligned}
& x=x^{\prime} \cos \ominus-y^{\prime} \sin \ominus \\
& y=x^{\prime} \sin \ominus+y^{\prime} \cos \ominus
\end{aligned}
$$

Application/Example: Show that $\mathrm{xy}=4$ is a conic rotated though an angle of 45 degrees.

$$
\begin{array}{cl}
x=x^{\prime} \cos (45)-y^{\prime} \sin (45) & x=\frac{\sqrt{2}}{2} x^{\prime}-\frac{\sqrt{2}}{2} y^{\prime} \\
y=x^{\prime} \sin (45)+y^{\prime} \cos (45) & \frac{\sqrt{2}}{2} x^{\prime}+\frac{\sqrt{2}}{2} y^{\prime} \\
x=\frac{\sqrt{2}}{2}\left(x^{\prime}-y^{\prime}\right) & \frac{\sqrt{2}}{2}\left(x^{\prime}-y^{\prime}\right) \cdot \frac{\sqrt{2}}{2}\left(x^{\prime}+y^{\prime}\right)=4 \\
y=\frac{\sqrt{2}}{2}\left(x^{\prime}+y^{\prime}\right) & \left(y^{\prime}\right) \cdot\left(x^{\prime}+y^{\prime}\right)=4 \\
y
\end{array}
$$

mathplane.com

Hyperbola!

Where does the rotation formula come from?

Ung trigonometry
addition identities

$$
\begin{aligned}
& \text { What is }(\Theta+\text { ' } \varnothing \text {)? } \\
& x^{\prime}=\operatorname{rcos}(\ominus+\infty) \\
& y^{\prime}=r \sin (\theta+\infty) \\
& x^{\prime}=r[\cos \ominus \cos \propto-\sin \ominus \sin \mathcal{\alpha}] \\
& y^{\prime}=r[\sin \ominus \cos \alpha+\cos \ominus \sin \mathcal{X}] \\
& \text { remember, } r=\frac{x}{\cos \ominus} \quad \text { and } r=\frac{y}{\sin \ominus}
\end{aligned}
$$

Θ is the original angle
' \propto ' is the rotated angle (counterclockwise)

Using substitution...

$$
\begin{aligned}
& x^{\prime}=\frac{x}{\cos \omega} \cos \theta \cos \alpha-\frac{y}{\sin \theta} \sin \theta \sin \alpha \\
& y^{\prime}=\frac{y}{\sin \theta} \sin \theta \cos \alpha+\frac{x}{\cos ^{\prime} \theta} \cos \theta \sin \alpha \\
& x^{\prime}=x \cos \alpha-y \sin \alpha \\
& y^{\prime}=y \cos \mathbb{Q}+x \sin \mathcal{X}^{2}
\end{aligned}
$$

General Form: $A^{2}+B x y+C^{2}+D x+E y+F=0$

$$
\begin{aligned}
B^{2}-4 A C<0 & \Rightarrow A^{\prime} C^{\prime}>0 \Rightarrow A^{\prime} \text { and } C^{\prime} \text { are the same sign } \Rightarrow \text { is an ellipse ; } \\
B^{2}-4 A C>0 \Rightarrow A^{\prime} C^{\prime}<0 \Rightarrow A^{\prime} \text { and } C^{\prime} \text { are of different sign } & \Rightarrow \text { is a hyperbola ; } \\
B^{2}-4 A C=0 \Rightarrow A^{\prime} C^{\prime}=0 \Rightarrow A^{\prime} \text { or } C^{\prime} \text { is zero } & \Rightarrow \text { is a parabola } .
\end{aligned}
$$

Example: $\mathrm{x}^{2}+4 \mathrm{xy}+\mathrm{y}^{2}-3=0$

What type of conic is it?

It appears to be a circle, because the A and C terms are the same. But, there is a B term...

$$
\mathrm{B}^{2}-4 \mathrm{AC}=12>0 \quad \text { therefore, it is a hyperbola! }
$$

Rotate the axes so that the new expression contains no "xy" term.

$$
\begin{aligned}
\cot (2 \ominus) & =\frac{\mathrm{A}-\mathrm{C}}{\mathrm{~B}} \\
\cot (2 \ominus) & =\frac{1-1}{4}=0 \\
2 \ominus & =90^{\circ} \\
\ominus & =45^{\circ}
\end{aligned}
$$

Convert the x and y coordinates into x^{\prime} and y^{\prime} terms...

$$
\begin{aligned}
& x=x^{\prime} \cos \ominus-y^{\prime} \sin \ominus \\
& y=x^{\prime} \sin \ominus+y^{\prime} \cos \ominus
\end{aligned}
$$

$$
\begin{gathered}
x=x^{\prime} \cos (45)-y^{\prime} \sin (45) \\
x=\frac{\sqrt{2}}{2} x^{\prime}-\frac{\sqrt{2}}{2} y^{\prime} \\
y=x^{\prime} \sin (45)+y^{\prime} \cos (45) \\
y=\frac{\sqrt{2}}{2} x^{\prime}+\frac{\sqrt{2}}{2} y^{\prime}
\end{gathered}
$$

Substitute and simplify...

$$
\begin{aligned}
& \left(\frac{\sqrt{2}}{2} x^{\prime}-\frac{\sqrt{2}}{2} y^{\prime}\right)^{2}+4\left(\frac{\sqrt{2}}{2} x^{\prime}-\frac{\sqrt{2}}{2} y^{\prime}\right)\left(\frac{\sqrt{2}}{2} x^{\prime}+\frac{\sqrt{2}}{2} y^{\prime}\right)+\left(\frac{\sqrt{2}}{2} x^{\prime}+\frac{\sqrt{2}}{2} y^{\prime}\right)^{2}=3 \\
& \frac{1}{2} x^{\prime 2}-x^{\prime} y^{\prime}+\frac{1}{2} y^{\prime 2}+4\left(\frac{1}{2} x^{\prime 2}-\frac{1}{2} y^{\prime 2}\right)+\frac{1}{2} x^{\prime 2}+x^{\prime} y^{\prime}+\frac{1}{2} y^{\prime 2}=3 \\
& \text { center: }(0,0)
\end{aligned}
$$

Note: the x ' y ' term disappears because there is no rotation!

$$
\begin{aligned}
& 3 \mathrm{x}^{2}-\mathrm{y}^{\prime 2}=3 \\
& \frac{\mathrm{x}^{\prime}}{1}-\frac{\mathrm{y}^{\prime}}{3}=1
\end{aligned}
$$

vertex: $(1,0)$ and $(-1,0)$ on the $x^{\prime} y^{\prime}$-coordinate plane.. foci: $(2,0)$ and $(-2,0)$ on the $x^{\prime} y^{\prime}$-coordiante plane.. asymptotes: $\mathrm{y}^{\prime}=\sqrt{3} \mathrm{x}^{\prime}$ and $\mathrm{y}^{\prime}=-\sqrt{3} \mathrm{x}^{\prime}$

Example: Given $17 \mathrm{x}^{2}+6 \mathrm{xy}+9 \mathrm{y}^{2}=72$
Find the angle of rotation for the axes that will align this conic (and eliminate the xy-term).
Define the sine and cosine of this angle.
Then, find the equation of the conic relative to the rotated axes.
First, what is the conic? $\mathrm{B}^{2}-4 \mathrm{AC}=(6)^{2}-4(17)(9) \quad$ less than 0 ; therefore it's an ELLIPSE

Now, to find the angle of rotation....
$\mathrm{a}=1$
$2(9-17) b+6\left(1-b^{2}\right)=0$
solve for b ...
$-16 b+6-6 b^{2}=0$

$$
3 b^{2}+8 b-3=0
$$

$$
\begin{gathered}
(3 b-1)(b+3)=0 \\
b=\frac{1}{3} \text { or }-3
\end{gathered}
$$

Note: one rotates clockwise; the other rotates counterclockwise...
(Either way will eliminate the xy-term)

For $\mathrm{Ax}^{2}+\mathrm{Bxy}+\mathrm{Cy}^{2}+\mathrm{D}=0$
the angle of rotation is

$$
\begin{array}{lll}
\sin \Theta=\frac{b}{c} & \text { found from: } & a=1 \\
\cos \Theta=\frac{a}{c} & & 2(C-A) b+B\left(1-b^{2}\right)=0 \\
& a^{2}+b^{2}=c^{2}
\end{array}
$$

$$
a^{2}+b^{2}=c^{2}
$$

$(1)^{2}+(-3)^{2}=c^{2}$
$c=\sqrt{10}$
$\sin \ominus=\frac{-3}{\sqrt{10}}$
$\cos \ominus=\frac{1}{\sqrt{10}}$

	$\mathrm{x}=\cos \ominus \mathrm{x}^{\prime}-\sin \ominus \mathrm{y}^{\prime}$
rotation of axes	
	$\mathrm{y}=\sin \ominus \mathrm{x}^{\prime}+\cos \ominus \mathrm{y}^{\prime}$

$$
\begin{aligned}
& x=\frac{1}{\sqrt{10}} x^{\prime}-\frac{-3}{\sqrt{10}} y^{\prime} \\
& y=\frac{-3}{\sqrt{10}} x^{\prime}+\frac{1}{\sqrt{10}} y^{\prime}
\end{aligned}
$$

Substitute into the original equation $\quad 17 x^{2}+6 x y+9 y^{2}=72$

$$
17\left(\frac{1}{\sqrt{10}} x^{\prime}+\frac{3}{\sqrt{10}} y^{\prime}\right)^{2}+6\left(\frac{1}{\sqrt{10}} x^{\prime}+\frac{3}{\sqrt{10}} y^{\prime}\right)\left(\frac{-3}{\sqrt{10}} x^{\prime}+\frac{1}{\sqrt{10}} y^{\prime}\right)+9\left(\frac{-3}{\sqrt{10}} x^{\prime}+\frac{1}{\sqrt{10}} y^{\prime}\right)^{2}=72
$$

$$
17\left(\frac{1}{10} x^{\prime}+\frac{6}{10} x^{\prime} y^{\prime}+\frac{9}{10} y^{\prime}\right)+6\left(\frac{-3}{10} x^{\prime}-\frac{8}{10} x^{\prime} y^{\prime}+\frac{3}{10} y^{\prime 2}\right)+9\left(\frac{9}{10} x^{2}-\frac{6}{10} x^{\prime} y^{\prime}+\frac{1}{10} y^{\prime}\right)=72
$$

$$
\begin{aligned}
& \frac{80}{10} \mathrm{x}^{\prime 2}+0 \mathrm{x}^{\prime} \mathrm{y}^{\prime}+\frac{180}{10} \mathrm{y}^{\prime 2}=72 \quad 8 \quad \mathrm{x}^{2}+18 \mathrm{y}^{\prime 2}=72 \quad \text { or } \quad \frac{\mathrm{x}^{2}}{9}+\frac{\mathrm{y}^{\prime 2}}{4}=1 \\
& \text { As expected, }
\end{aligned}
$$

As expected, the $x^{\prime} y^{\prime}$ term is zero

Example: Identify the following rotated conic. Then, rotate the axes to eliminate the xy term.
$x^{2}+4 x y-2 y^{2}-6=0$

To find the angle of rotation, we'll use

$\operatorname{Tan}(2 \ominus)=\frac{\mathrm{B}}{\mathrm{A}-\mathrm{C}}$	$\operatorname{Tan}(2 \ominus)=\frac{4}{1-(-2)}$
	$\frac{2 \operatorname{Tan} \theta}{1-\operatorname{Tan}^{2} \theta}=\frac{4}{3}$
	$4\left(1-\operatorname{Tan}^{2} \ominus\right)=6 \mathrm{Tan} \theta$
	$4 \operatorname{Tan}^{2} \ominus+6 \mathrm{~T} \operatorname{Tan} \ominus-4=0$
	$2 \operatorname{Tan}^{2} \ominus+3 \operatorname{Tan} \ominus-2=0$
	$(2 \operatorname{Tan} \ominus-1)(\operatorname{Tan} \ominus+2)=0$

To identify the conic, find $B^{2}-4 A C$

$$
4^{2}-4(1)(-2)=24>0 \leadsto \text { hyperbola }
$$

$\operatorname{Tan} \ominus=1 / 2$
or
We can use either
(One rotates clockwise, and one rotates counterclockwise.. But, either will eliminate the xy term)

$$
\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right] \quad \text { Rotating the axes } \quad \longrightarrow \quad\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right]=\left[\begin{array}{ll}
\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\
\frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}}
\end{array}\right]\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right] \quad \begin{aligned}
& x=\frac{1}{\sqrt{5}} x^{\prime}+\frac{2}{\sqrt{5}} y^{\prime} \\
& \frac{-2}{\sqrt{5}} x^{\prime}+\frac{1}{\sqrt{5}} y^{\prime}
\end{aligned}
$$

$x^{2}+4 x y-2 y^{2}-6=0$
Substitute:

$$
\left(\frac{1}{\sqrt{5}} x^{\prime}+\frac{2}{\sqrt{5}} y^{\prime}\right)^{2}+4\left(\frac{1}{\sqrt{5}} x^{\prime}+\frac{2}{\sqrt{5}} y^{\prime}\right)\left(\frac{-2}{\sqrt{5}} x^{\prime}+\frac{1}{\sqrt{5}} y^{\prime}\right)-2\left(\frac{-2}{\sqrt{5}} x^{\prime}+\frac{1}{\sqrt{5}} y^{\prime}\right)^{2}-6=0
$$

Expand:

$$
\frac{1}{5} x^{\prime}{ }^{2}+\frac{4}{5} x^{\prime} y^{\prime}+\frac{4}{5} y^{\prime} \quad-\frac{8}{5} x^{\prime 2}+\frac{4}{5} x^{\prime} y^{\prime}-\frac{16}{5} x^{\prime} y^{\prime} \quad+\frac{8}{5} y^{\prime}{ }^{2} \quad-\frac{8}{5} x^{\prime}{ }^{2}+\frac{8}{5} x^{\prime} y^{\prime}-\frac{2}{5} y^{\prime 2}-6=0
$$

Collect terms:

$$
\frac{-15}{5} x^{\prime} 2^{2}+0 x^{\prime} y^{\prime}+\frac{10}{5} y^{\prime} \quad-6=0 \quad \square \quad-3 x^{\prime}{ }^{2}+2 y^{\prime}=6 \quad \text { or } \quad \frac{y^{2}}{3}-\frac{x^{2}}{2}=1
$$

Note: the $x^{\prime} y^{\prime}$ term is 0

For the conic $16 x^{2}+24 x y+9 y^{2}+105 x+110 y+225=0$,
a) Identify the conic
b) Find the angle of rotation that aligns the axes with this conic
c) Sketch a graph
a) $\mathrm{B}^{2}-4 \mathrm{AC}=(24)^{2}-4(16)(9)=0$

$$
\leadsto \text { PARABOLA }
$$

For $\mathrm{Ax}^{2}+\mathrm{Bxy}+\mathrm{Cy}^{2}+\mathrm{D}=0$
the angle of rotation is

$$
\begin{array}{lll}
\sin \Theta=\frac{b}{c} & \text { found from: } & a=1 \\
\cos \Theta=\frac{a}{c} & 2(C-A) b+B\left(1-b^{2}\right)=0 \\
& a^{2}+b^{2}=c^{2}
\end{array}
$$

$$
\begin{array}{ll}
a^{2}+b^{2}=c^{2} & \cos \ominus=\frac{4}{5} \\
1+9 / 16=c^{2} & \sin \ominus=\frac{3}{5} \\
c=5 / 4 & x=\frac{4}{5} x^{\prime}-\frac{3}{5} y^{\prime} \\
& y=\frac{3}{5} x^{\prime}+\frac{4}{5} y^{\prime}
\end{array}
$$

$$
16 x^{2}+24 x y+9 y^{2}+105 x+110 y+225=0
$$

$$
16\left(\frac{4}{5} x^{\prime}-\frac{3}{5} y^{\prime}\right)^{2}+24\left(\frac{4}{5} x^{\prime}-\frac{3}{5} y^{\prime}\right)\left(-\frac{3}{5} x^{\prime}+\frac{4}{5} y^{\prime}\right)+9\left(-\frac{3}{5} x^{\prime}+\frac{4}{5} y^{\prime}\right)^{2}+105\left(\frac{4}{5} x^{\prime}-\frac{3}{5} y^{\prime}\right)+110\left(-\frac{3}{5} x^{\prime}+\frac{4}{5} y^{\prime}\right)+225=0
$$

$$
\text { simplifies to } 25 x^{\prime 2}+150 x^{\prime}+25 y^{\prime}+225=0 \quad x^{\prime 2}+6 x^{\prime}+y^{\prime}+9=0
$$

$$
y^{\prime}=-1\left(x^{\prime 2}+6^{\prime} x+9\right)
$$

or

$$
y^{\prime}=-(x+3)^{2}
$$

First, let's find the vertex....
We know the vertex is equidistant from the focus and directrix....

> focus: $(0,0)$
> directrix: $y=-x+4$

Using geometry, we can determine the vertex...
Since directrix slope is -1 , we know the slope of a perpendicular line is $1 \ldots$
and, since the perpendicular line goes through $(0,0)$, we have $y=x$
then, solving system of equations, we know the intersection of

$$
\mathrm{y}=\mathrm{x} \text { and } \mathrm{y}=-\mathrm{x}+4 \quad \text { is }(2,2)
$$

The intersection is $(2,2) \ldots$ therefore, the midpoint between the focus $(0,0)$ and the intersection $(2,2)$ is $(1,1)$

$$
\text { We now know the vertex is }(1,1) \ldots
$$

and, we see that the directrix has been rotated 45 degrees....
***definition of parabola: any point on the parabola is equidistant to the focus and directrix!

$$
\begin{aligned}
& \text { Distance from any } \\
& \text { point to the directrix }
\end{aligned}
$$

Example: Given: Vertices $(-4,11)$ and $(6,1)$

Foci $(-3,10)$ and $(5,2)$

Find the equation of the ellipse...

Step 1: make a sketch and find properties of ellipse...

Step 2: find the angle of rotation...

The midpoint of the
vertices is the center $(1,6)$

$$
\underline{(x-1)^{2}}+\underline{(y-6)^{2}}=1
$$

and, the distance from the center to each vertex is

$$
a=\sqrt{(-4-1)^{2}+(11-6)^{2}}=\sqrt{50}
$$

$$
\frac{(x-1)^{2}}{50}+\frac{(y-6)^{2}}{b^{2}}=1
$$

$$
c=\sqrt{(-3-1)^{2}+(10-6)^{2}}=\sqrt{32}
$$

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2} \\
& a^{2}=50 \\
& c^{2}=32
\end{aligned}
$$

$$
\frac{(x-1)^{2}}{50}+\frac{(y-6)^{2}}{18}=1
$$

The slope of the major axis is $-1 \ldots$
The x -axis is horizontal...
This ellipse is rotated 45 degrees clockwise

Step 3: shift and rotate the ellipse..

$$
\begin{aligned}
& \text { rotate } 45 \text { degrees clockwise } \begin{array}{l}
\text { after shifting } \\
\text { center to origin }
\end{array} \quad \text { translate }\langle 1,6\rangle \\
& {\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{rr}
\cos (-45) & -\sin (-45) \\
\sin (-45) & \cos (-45)
\end{array}\right]\left[\begin{array}{l}
x-1 \\
y-6
\end{array}\right]+\left[\begin{array}{l}
1 \\
6
\end{array}\right]} \\
& {\left[\begin{array}{l}
x^{\prime}-1 \\
y^{\prime}-6
\end{array}\right]=\left[\begin{array}{cc}
\frac{\mu \sqrt{2}}{2} & \frac{\mu \sqrt{2}}{2} \\
-\frac{\mu \sqrt{2}}{2} & \frac{\lambda \sqrt{2}}{2}
\end{array}\right]\left[\begin{array}{cc}
x-1 \\
y-6
\end{array}\right] \longleftrightarrow\left[\begin{array}{cc}
\frac{\wedge \sqrt{2}}{2} & \frac{\mu \sqrt{2}}{2} \\
-\frac{\sqrt{2}}{2} & \frac{\wedge \sqrt{2}}{2}
\end{array}\right]^{-1}\left[\begin{array}{l}
x^{\prime}-1 \\
y^{\prime}-6
\end{array}\right]=\left[\begin{array}{l}
x-1 \\
y-6
\end{array}\right]}
\end{aligned}
$$

Step 4: Substitute for x and y ...
$\frac{(x-1)^{2}}{50}+\frac{(y-6)^{2}}{18}=1 \sim\left(\frac{\sqrt{2}\left(x^{\prime}-y^{\prime}+5\right)}{2}+1-1\right)^{2}+\frac{\left(\frac{\lambda \sqrt{2}\left(x^{\prime}+y^{\prime}-7\right)}{2}+6-6\right)}{50}+\frac{2}{18}=1$

Example: Find the equation of the ellipse with vertices $(10,10 \sqrt{3})$ and $(-10,-10 \sqrt{3})$

$$
\text { and co-vertices }(4 \sqrt{3,-4}) \text { and }(-4 \sqrt{3}, 4)
$$

Step 1: Draw a diagram and find the ellipse's properties

The midpoint of the vertices and co-vertices is the center $(0,0)$
The "a" value (or, semi-major axis) is 20
\square \qquad

Step 2: Identify the rotation and write the transformation

The 'original' ellipse above is rotated 60 degrees counterclockwise...
$\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{cc}\cos (60) & -\sin (60) \\ \sin (60) & \cos (60)\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$

Find x and $\mathrm{y} . .$.

$$
\begin{gathered}
{\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right]=\left[\begin{array}{cc}
\cos (60) & -\sin (60) \\
\sin (60) & \cos (60)
\end{array}\right]^{-1}\left[\begin{array}{l}
\mathrm{x}^{\prime} \\
\mathrm{y}^{\prime}
\end{array}\right]} \\
{\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right]=\left[\begin{array}{rr}
\cos (60) & \sin (60) \\
-\sin (60) & \cos (60)
\end{array}\right]\left[\begin{array}{l}
\mathrm{x}^{\prime} \\
\mathrm{y}^{\prime}
\end{array}\right]} \\
\mathrm{x}=\frac{1}{2} \mathrm{x}^{\prime}+\frac{\sqrt{3}}{2} \mathrm{y}^{\prime} \\
\mathrm{y}=-\frac{\sqrt{3}}{2} \mathrm{x}^{\prime}+\frac{1}{2} \mathrm{y}^{\prime}
\end{gathered}
$$

Step 3: Substitute into the 'original' ellipse...

$$
\frac{x^{2}}{400}+\frac{y^{2}}{64}=1 \quad \frac{\left(\frac{1}{2} x^{\prime}+\frac{\sqrt{3}}{2} y^{\prime}\right)^{2}}{400}+\frac{\left(-\frac{\sqrt{3}}{2} x^{\prime}+\frac{1}{2} y^{\prime}\right)^{2}}{64}=1
$$

Example: A hyperbola whose foci are $(8 \sqrt{2}, 8 \sqrt{2})$ and $(-8 \sqrt{2},-8 \sqrt{2})$ has asymptotes on the x -axis and y -axis.

Find the equation of the hyperbola.

$$
\left[\begin{array}{l}
\mathrm{x}^{\prime} \\
\mathrm{y}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
\cos \ominus & \sin \ominus \\
-\sin \ominus & \cos \ominus
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right] \quad \text { Clockwise rotation of } \Theta \text { degrees }
$$

To find x and y, we use the inverse matrix!

$$
\left[\begin{array}{l}
\mathrm{x}^{\prime} \\
\mathrm{y}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\cos \ominus & \sin \ominus \\
-\sin \ominus & \cos \ominus
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right]
$$

$$
\begin{aligned}
& \left.\left[\begin{array}{ll}
\cos \ominus & -\sin \ominus \\
\sin \ominus & \cos \ominus
\end{array}\right]\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
0
\end{array}\right] \quad \begin{array}{l}
x=x^{\prime} \cos \ominus-y^{\prime} \sin \ominus \\
y=x^{\prime} \sin \ominus+y^{\prime} \cos \ominus
\end{array}\right]
\end{aligned}
$$

Example. For the following ellipse $3(\mathrm{x}-4)^{2}+(\mathrm{y}+2)^{2}=27$
Find the equation of the ellipse after it is rotated 45 degrees counterclockwise
a) around the origin

b) around the center of the ellipse

a) rotation 45 degrees around the origin...

$$
\left[\begin{array}{l}
\mathrm{x}^{\prime} \\
\mathrm{y}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right]
$$

Multiply each side by the inverse of the rotation matrix...

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{l}
\mathrm{x}^{\prime} \\
\mathrm{y}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right]} \\
& {\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
\\
\hline
\end{array}\right] \quad x=\frac{1}{\sqrt{2}} x^{\prime}+\frac{1}{\sqrt{2}} y^{\prime} \quad \begin{array}{c}
x^{\prime}+y^{\prime} \\
\sqrt{2}
\end{array}} \\
& \left.\left.\frac{-1}{\sqrt{2}} \frac{1}{\sqrt{2}}\right]^{y^{\prime}}\right]\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{l}
y \\
\\
\end{array}\right. \\
& y=\frac{-1}{\sqrt{2}} x^{\prime}+\frac{1}{\sqrt{2}} y^{\prime} \square \frac{-x^{\prime}+y^{\prime}}{\sqrt{2}}
\end{aligned}
$$

Substitute into original equation...

$$
3(x-4)^{2}+(y+2)^{2}=27 \underbrace{\left(\frac{x^{\prime}+y^{\prime}}{\sqrt{2}}-4\right)^{2}}+\frac{\left(\frac{-x^{\prime}+y^{\prime}}{\sqrt{2}}+2\right)^{2}}{27}=1
$$

Example (continued): For the following ellipse $3(\mathrm{x}-4)^{2}+(\mathrm{y}+2)^{2}=27$
Find the equation of the ellipse after it is rotated 45 degrees counterclockwise
b) around the center of the ellipse
b) rotating around the center of the ellipse....

$$
\left[\begin{array}{l}
\mathrm{x}^{\prime} \\
\mathrm{y}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{c}
\mathrm{x}-4 \\
\mathrm{y}+2
\end{array}\right]+\left[\begin{array}{c}
4 \\
-2
\end{array}\right]
$$

(2)
rotation 45 degrees
(1)
moving each point to the origin
reapplying the shift back to
the rotated point

$$
\left[\begin{array}{l}
x^{\prime}-4 \\
y^{\prime}+2
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{l}
x-4 \\
y+2
\end{array}\right]
$$

Multiply each side by the inverse of the rotation matrix...
$\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right]\left[\begin{array}{l}x^{\prime}-4 \\ y^{\prime}+2\end{array}\right]=\left[\begin{array}{l}x-4 \\ y+2 \\ \end{array}\right]$
$\left[\begin{array}{c}\frac{x^{\prime}-4}{\sqrt{2}}+\frac{y^{\prime}+2}{\sqrt{2}} \\ \frac{-x^{\prime}+4}{\sqrt{2}}+\frac{y^{\prime}+2}{\sqrt{2}}\end{array}\right]=\left[\begin{array}{l}x-4 \\ \\ y+2\end{array}\right]$

$$
\left[\begin{array}{c}
\frac{x^{\prime}-4}{\sqrt{2}}+\frac{y^{\prime}+2}{\sqrt{2}}+4 \\
\frac{-x^{\prime}+4}{\sqrt{2}}+\frac{y^{\prime}+2}{\sqrt{2}}-2
\end{array}\right]=\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right]
$$

Then, plug into original equation....

$$
\begin{aligned}
& 3(x-4)^{2}+(y+2)^{2}=27 \\
& 3\left(\frac{x^{\prime}-4}{\sqrt{2}}+\frac{y^{\prime}+2}{\sqrt{2}}+4-4\right)^{2}+\left(\frac{-x^{\prime}+4}{\sqrt{2}}+\frac{y^{\prime}+2}{\sqrt{2}}-2+2\right)^{2}=27 \\
& 3\left(\frac{x^{\prime}+y^{\prime}-2}{\sqrt{2}}\right)^{2}+\left(\frac{-x^{\prime}+y^{\prime}+6}{\sqrt{2}}\right)^{2}=27 \\
& \frac{\left(x^{\prime}+y^{\prime}-2\right)^{2}}{18}+\frac{\left(-x^{\prime}+y^{\prime}+6\right)^{2}}{54}=1
\end{aligned}
$$

Show that the equation $x^{2}+y^{2}=49$ is invariant under any rotation.

Intuitively, we know this equation is invariant, because it's a circle centered at the origin. So, any rotation, and it remains a circle centered at the origin...

Let's prove it algebraically...

$$
\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right]=\left[\begin{array}{ll}
\cos \Theta & \sin \Theta \\
-\sin \Theta & \cos \Theta
\end{array}\right]\left[\begin{array}{l}
\mathrm{x}^{\prime} \\
\mathrm{y}^{\prime}
\end{array}\right]
$$

is any rotation of angle Θ (rotation could be clockwise or counter-clockwise)

$$
\begin{array}{ll}
\text { So, we substitute } & x=x^{\prime} \cos \Theta+y^{\prime} \sin \Theta \\
& y=-x^{\prime} \sin \Theta+y^{\prime} \cos \Theta
\end{array} \quad \text { into the original equation.... }
$$

$x^{2}+y^{2}=49$

$$
\begin{gathered}
\left(x^{\prime} \cos \Theta+y^{\prime} \sin \Theta\right)^{2}+\left(-x^{\prime} \sin \Theta+y^{\prime} \cos \Theta\right)^{2}=49 \\
x^{\prime}{ }^{2} \cos ^{2} \Theta+2 x^{\prime} y^{\prime} \cos \Theta \sin \Theta+y^{\prime} 2 \sin ^{2} \Theta+x^{\prime}{ }^{2} \sin ^{2} \Theta-2 x^{\prime} y^{\prime} \cos \Theta \sin \Theta+y^{\prime} \cos ^{2} \Theta=49
\end{gathered}
$$

cancel, rearrange, and factor...

$$
\begin{array}{r}
\mathrm{x}^{\prime 2} \cos ^{2} \Theta+\mathrm{x}^{\prime 2} \sin ^{2} \Theta+\mathrm{y}^{\prime 2} \sin ^{2} \Theta+\mathrm{y}^{\prime 2} \cos ^{2} \Theta=49 \\
\mathrm{x}^{\prime 2}\left(\cos ^{2} \Theta+\sin ^{2} \Theta\right)+\mathrm{y}^{\prime 2}\left(\cos ^{2} \Theta+\sin ^{2} \Theta\right)=49
\end{array}
$$

trigonometry identity..

$$
\mathrm{x}^{2}+\mathrm{y}^{\prime 2}=49
$$

Practice Quiz- \rightarrow

Rotation of Conics Exercise

In the following general equations,
a) Identify the conic
b) Rotate the axes, and write the new expression containing no 'xy' term
c) Graph

1) $6 x^{2}+4 x y+9 y^{2}-20=0$

2) $4 x^{2}-12 x y+9 y^{2}+12 x+8 y=0$

3) $2 x^{2}-8 x y+2 y^{2}-6=0$

4) $4 x^{2}-6 x y+4 y^{2}-6 y-2=0$

5) $4 x^{2}+12 x y+9 y^{2}+8 \sqrt{13} x+12 \sqrt{13} y-65=0$

6) $16 x^{2}-24 x y+9 y^{2}+110 x-20 y+100=0$

a) Identify the conic
b) Rotate the axes, and write the new expression containing no 'xy' term

SOLUTIONS
mathplane.com
c) Graph

1) $6 x^{2}+4 x y+9 y^{2}-20=0$
a) $B^{2}-4 A C$
$(4)^{2}-4(6)(9)=-200<0$
Since less than zero, it's a rotated ellipse...
b) $\cot (2 \ominus)=\frac{A-C}{B}$

$$
\cot (2 \ominus)=\frac{6-9}{4}=-3 / 4
$$

$\operatorname{arccot}(-3 / 4)=2 \ominus$
$126.87=2 \ominus$

$$
\ominus \approx 63.4^{\circ}
$$

c) $\mathrm{x}=\mathrm{x}^{\prime} \cos (63.4)-\mathrm{y}^{\prime} \sin (63.4)$

$$
\mathrm{x}=.45 \mathrm{x}^{\prime}-.89 \mathrm{y}^{\prime}
$$

$$
\begin{aligned}
& x=x^{\prime} \cos \ominus-y^{\prime} \sin \ominus \\
& y=x^{\prime} \sin \ominus+y^{\prime} \cos \ominus
\end{aligned}
$$

$$
\mathrm{y}=\mathrm{x}^{\prime} \sin (63.4)+\mathrm{y}^{\prime} \cos (63.4)
$$

$$
\mathrm{y}=.89 \mathrm{x}^{\prime}+.45 \mathrm{y}^{\prime}
$$

then, substitute:

$$
\begin{aligned}
& \tan (63.4)=2\left(\text { slope of } x^{\prime}\right. \text {-axis) } \\
& \text { then, }-1 / 2 \text { (slope of } y^{\prime} \text {-axis) }
\end{aligned}
$$

$$
6 x^{2}+4 x y+9 y^{2}-20=0 \longleftarrow 6\left(.45 x^{\prime}-.89 y^{\prime}\right)^{2}+4\left(.45 x^{\prime}-.89 y^{\prime}\right)\left(.89 x^{\prime}+.45 y^{\prime}\right)+9\left(.89 x^{\prime}+.45 y^{\prime}\right)^{2}=20
$$

$$
6\left(.20 x^{\prime}-.8 x^{\prime} y^{\prime}+.79 y^{\prime 2}\right)+4\left(.40 x^{\prime 2}-.79 x^{\prime} y^{\prime}+.20 x^{\prime} y^{\prime}-.40 y^{\prime 2}\right)+9\left(.79 x^{\prime 2}+.8 x^{\prime} y^{\prime}+.20 y^{\prime 2}\right)=20
$$

$$
9.91 x^{\prime 2}+0 x^{\prime} y^{\prime}+4.94 y^{\prime 2}=20
$$

$$
\frac{\mathrm{x}^{\prime 2}}{2}+\frac{\mathrm{y}^{\prime 2}}{4}=1 \quad \text { center: }(0,0) \quad \begin{aligned}
& \text { minor semi-axis: } 1.4 \\
& \text { major semi-axis: } 2
\end{aligned}
$$

2) $4 x^{2}-12 x y+9 y^{2}+12 x+8 y=0$

a) $\mathrm{B}^{2}-4 \mathrm{AC}$

$(-12)^{2}-4(4)(9)=0$
Since it equals 0 , it's rotated parabola...
b) $\cot (2 \ominus)=\frac{\mathrm{A}-\mathrm{C}}{\mathrm{B}}$

$$
\cot (2 \ominus)=\frac{4-9}{-12}=5 / 12
$$

$$
\begin{aligned}
2 \theta & =67.38 \\
\theta & \approx 33.7^{\circ}
\end{aligned}
$$

c) $x=x^{\prime} \cos (33.7)-y^{\prime} \sin (33.7)$

$$
\begin{aligned}
& \mathrm{x}=\mathrm{x}^{\prime} \cos \ominus-\mathrm{y}^{\prime} \sin \ominus \\
& \mathrm{y}=\mathrm{x}^{\prime} \sin \ominus+\mathrm{y}^{\prime} \cos \ominus
\end{aligned}
$$

$$
\begin{gathered}
x=.83 x^{\prime}-.55 y^{\prime} \\
y=x^{\prime} \sin (33.7)+y^{\prime} \cos (33.7) \\
y=.55 x^{\prime}+.83 y^{\prime}
\end{gathered}
$$

then, substitute..

$4\left(.83 x^{\prime}-.55 y^{\prime}\right)^{2}-12\left(.83 x^{\prime}-.55 y^{\prime}\right)\left(.55 x^{\prime}+.83 y^{\prime}\right)+9\left(.55 x^{\prime}+.83 y^{\prime}\right)^{2}+12\left(.83 x^{\prime}-.55 y^{\prime}\right)+8\left(.55 x^{\prime}+.83 y^{\prime}\right)=0$ then, -1.5 (slope of y^{\prime}-axis)
$4\left(.69 x^{\prime 2}-.91 x^{\prime} y^{\prime}+.30 y^{\prime 2}\right)-12\left(.46 x^{\prime 2}+.39 x^{\prime} y^{\prime}-.46 y^{\prime 2}\right)+9\left(.30 x^{\prime 2}+.91 x^{\prime} y^{\prime}+.69 y^{\prime 2}\right)+9.96 x^{\prime}-6.6 y^{\prime}+4.4 x^{\prime}+6.64 y^{\prime}=0$

$$
0 \mathrm{x}^{\prime 2}+0 \mathrm{x}^{\prime} \mathrm{y}^{\prime}+12.9 \mathrm{y}^{\prime 2}+14.35 \mathrm{x}^{\prime}+0 \mathrm{y}^{\prime}=0 \quad 14.35 \mathrm{x}^{\prime}=-12.9 \mathrm{y}^{\prime} \quad \square \quad \mathrm{x}^{\prime}=-.9\left(\mathrm{y}^{\prime}\right)^{2}
$$

vertex: $(0,0)$ Opens to the left...
3) $2 x^{2}-8 x y+2 y^{2}-6=0$

$$
\begin{gathered}
\text { a) } \mathrm{B}^{2}-4 \mathrm{AC} \\
(-8)^{2}-4(2)(2)=48>0 \\
\text { Since it is greater than } 0, \text { it's } \\
\text { b) } \cot (2 \ominus)=\frac{\mathrm{A}-\mathrm{C}}{\mathrm{~B}} \\
\cot (2 \ominus)=\frac{2-2}{-8}=0 \\
2 \ominus=90^{\circ} \\
\ominus=45^{\circ}
\end{gathered}
$$

$$
\begin{aligned}
& x=x^{\prime} \cos \ominus-y^{\prime} \sin \ominus \\
& y=x^{\prime} \sin \ominus+y^{\prime} \cos \ominus
\end{aligned}
$$

Since it is greater than 0 , it's a rotated hyperbola ...
c) $x=x^{\prime} \cos (45)-y^{\prime} \sin (45)$

$$
\begin{gathered}
x=\frac{\sqrt{2}}{2} x^{\prime}-\frac{\sqrt{2}}{2} y^{\prime} \\
y=x^{\prime} \sin (45)+y^{\prime} \cos (45) \\
y=\frac{\sqrt{2}}{2} x^{\prime}+\frac{\sqrt{2}}{2} y^{\prime}
\end{gathered}
$$

then, substitute..

$2\left(\frac{\sqrt{2}}{2} x^{\prime}-\frac{\sqrt{2}}{2} y^{\prime}\right)^{2}-8\left(\frac{\sqrt{2}}{2} x^{\prime}-\frac{\sqrt{2}}{2} y^{\prime}\right)\left(\frac{\sqrt{2}}{2} x^{\prime}+\frac{\sqrt{2}}{2} y^{\prime}\right)+2\left(\frac{\sqrt{2}}{2} x^{\prime}+\frac{\sqrt{2}}{2} y^{\prime}\right)^{2}=6$
$2\left(\frac{1}{2} x^{\prime 2}-x^{\prime} y^{\prime}+\frac{1}{2} y^{\prime 2}\right)-8\left(\frac{1}{2} x^{\prime 2}-\frac{1}{2} y^{\prime^{2}}\right)+2\left(\frac{1}{2} x^{\prime 2}+x^{\prime} y^{\prime}+\frac{1}{2} y^{\prime 2}\right)=6$

$$
-2 x^{\prime 2}+0 x^{\prime} y^{\prime}+6 y^{\prime 2}=6
$$

$$
\frac{\mathrm{y}^{\prime 2}}{1}-\frac{\mathrm{x}^{\prime^{2}}}{3}=1
$$

'vertical hyperbola' center: $(0,0)$
$\tan (45)=1$ so, $\mathrm{y}=(1) \mathrm{x}$ becomes the x 'axis and, $y=(-1) x$ becomes the y^{\prime} axis
vertex (on the x'y'- coordinate plane): $(0,1)(0,-1)$
co-vertex (on the $x^{\prime} y^{\prime}$-coordinate plane): $(4 \sqrt{3}, 0)(-\sqrt{3}, 0)$
4) $4 x^{2}-6 x y+4 y^{2}-6 y-2=0$

$$
\begin{aligned}
& x=x^{\prime} \cos \ominus-y^{\prime} \sin \ominus \\
& y=x^{\prime} \sin \ominus+y^{\prime} \cos \ominus
\end{aligned}
$$

c) $x=x^{\prime} \cos (45)-y^{\prime} \sin (45)$
$\mathrm{x}=\frac{\sqrt{2}}{2} \mathrm{x}^{\prime}-\frac{\sqrt{2}}{2} \mathrm{y}^{\prime}$
$\mathrm{x}=\frac{\sqrt{2}}{2}\left(\mathrm{x}^{\prime}-\mathrm{y}^{\prime}\right)$
$y=x^{\prime} \sin (45)+y^{\prime} \cos (45)$
$\mathrm{y}=\frac{\sqrt{2}}{2} \mathrm{x}^{\prime}+\frac{\sqrt{2}}{2} \mathrm{y}^{\prime}$
$\mathrm{y}=\frac{\sqrt{2}}{2}\left(\mathrm{x}^{\prime}+\mathrm{y}^{\prime}\right)$
then, substitute..
$2\left(x^{\prime}-y^{\prime}\right)^{2}-3\left(x^{\prime}{ }^{2}-y^{\prime}{ }^{2}\right)+2\left(x^{\prime}+y^{\prime}\right)^{2}-3 \sqrt{2}\left(x^{\prime}+y^{\prime}\right)=2$
$x^{\prime 2}+0 x^{\prime} y^{\prime}+7 y^{\prime 2}-3 \sqrt{2} x^{\prime}-3 \sqrt{2} y^{\prime}=2$
(complete the square)
$x^{\prime 2}-3 \sqrt{2} x^{\prime}+\frac{9}{2}+7\left(y^{\prime 2}-\frac{3 \sqrt{2} y^{\prime}}{7}+\frac{18}{196}\right)=2+\frac{9}{2}+\frac{18}{28}$
$\left(\mathrm{x}^{\prime}-\frac{3}{\sqrt{2}}\right)^{2}+7\left(\mathrm{y}^{\prime}-\frac{3}{\sqrt{98}}\right)^{2}=\frac{50}{7} \quad\left(\mathrm{x}^{\prime}-2.12\right)^{2}+7\left(\mathrm{y}^{\prime}-.30\right)^{2}=7.14$
a) $B^{2}-4 A C$
$(-6)^{2}-4(4)(4)=-28<0$
rotated AND shifted ellipse
b) $\tan (2 \ominus)=\frac{\mathrm{B}}{\mathrm{A}-\mathrm{C}}$ $\tan (2 \ominus)=\frac{-6}{4-4} \quad$ undefined $2 \theta=90^{\circ}$
$\theta=45^{\circ}$

center: $(2.12, .30)$ on the $x^{\prime} y^{\prime}$-coordinate plane vertices: $(-.55, .30)$ and $(4.79, .30)$
co-vertices: $(2.12,1.30)$ and ($2.12,-.70$)
(approximate values)
$\frac{\left(x^{\prime}-2.12\right)^{2}}{7.14}+\frac{\left(y^{\prime}-.30\right)^{2}}{1.02}=1$
5) $7 x^{2}+6 x y-y^{2}-32=0$
$\mathrm{B}^{2}-4 \mathrm{AC}=36-4(7)(-1)>0 \quad$ HYPERBOLA
To find the angle of rotation...
$\mathrm{a}=1$

$$
a^{2}+b^{2}=c^{2}
$$

$$
2(C-A) b+B\left(1-b^{2}\right)=0
$$

If we use $b=-3$

$$
2(-1-7) b+6\left(1-b^{2}\right)=0
$$

$$
-6 b^{2}-16 b+6=0
$$

$$
3 b^{2}+8 b-3=0
$$

$\mathrm{b}=1 / 3$ or -3

$$
\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{\sqrt{10}} & \frac{3}{\sqrt{10}} \\
\frac{-3}{\sqrt{10}} & \frac{1}{\sqrt{10}}
\end{array}\right]\left[\begin{array}{l}
\mathrm{x}^{\prime} \\
\mathrm{y}^{\prime}
\end{array}\right] \Rightarrow \begin{aligned}
& \mathrm{x}=\frac{1}{\sqrt{10}} \mathrm{x}^{\prime}+\frac{3}{\sqrt{10}} \mathrm{y}^{\prime} \\
& \mathrm{y}=\frac{-3}{\sqrt{10}} \mathrm{x}^{\prime}+\frac{1}{\sqrt{10}} \mathrm{y}^{\prime}
\end{aligned}
$$

Then, substitution $\quad 7 x^{2}+6 x y-y^{2}-32=0$

$$
7\left(\frac{1}{\sqrt{10}} x^{\prime}+\frac{3}{\sqrt{10}} y^{\prime}\right)^{2}+6\left(\frac{1}{\sqrt{10}} x^{\prime}+\frac{3}{\sqrt{10}} y^{\prime}\right)\left(\frac{-3}{\sqrt{10}} x^{\prime}+\frac{1}{\sqrt{10}} y^{\prime}\right)-\left(\frac{-3}{\sqrt{10}} x^{\prime}+\frac{1}{\sqrt{10}} y^{\prime}\right)^{2}=32
$$

$$
-2 x^{\prime 2}+8 y^{\prime 2}-32=0 \quad \text { or } \quad \frac{y^{\prime}{ }^{2}}{4}-\frac{x^{\prime}}{16}=1
$$

$$
(3 b-1)(b+3)=0
$$

If rotated the other direction:

$$
4 x^{\prime 2}-y^{\prime 2}-16=0
$$

or

$$
\frac{x^{\prime 2}}{4}-\frac{y^{\prime 2}}{16}=1
$$

6) $4 x^{2}+12 x y+9 y^{2}+8 \sqrt{13} x+12 \sqrt{13} y-65=0$

$$
\mathrm{B}^{2}-4 \mathrm{AC}=12^{2}-4(4)(9)=0 \quad \text { PARABOLA }
$$

$$
(3 b+2)(2 b-3)=0
$$

$$
\mathrm{c}=\frac{\sqrt{13}}{2}
$$

$$
\mathrm{b}=-2 / 3 \text { or } 3 / 2
$$

$$
\begin{aligned}
& x=\frac{2}{\sqrt{13}} x^{\prime}+\frac{-3}{\sqrt{13}} y^{\prime} \\
& y=\frac{3}{\sqrt{13}} x^{\prime}+\frac{2}{\sqrt{13}} y^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \text { NOTE: If we had used } b=-2 / 3 \text {, the axes would have } \\
& \text { been rotated the other direction, and the } \\
& \text { result would have been }\left(y^{\prime}+2\right)^{2}=9
\end{aligned}
$$

$$
\begin{aligned}
& 4 x^{2}+12 x y+9 y^{2}+8 \sqrt{13} x+12 \sqrt{13} y-65=0 \\
& 4\left(\frac{2}{\sqrt{13}} x^{\prime}+\frac{-3}{\sqrt{13}} y^{\prime}\right)^{2}+12\left(\frac{2}{\sqrt{13}} x^{\prime}+\frac{-3}{\sqrt{13}} y^{\prime}\right)\left(\frac{3}{\sqrt{13}} x^{\prime}+\frac{2}{\sqrt{13}} y^{\prime}\right)+9\left(\frac{3}{\sqrt{13}} x^{\prime}+\frac{2}{\sqrt{13}} y^{\prime}\right)^{2}+8 \sqrt{13}\left(\frac{2}{\sqrt{13}} x^{\prime}+\frac{-3}{\sqrt{13}} y^{\prime}\right)+12 \sqrt{13}\left(\frac{3}{\sqrt{13}} x^{\prime}+\frac{2}{\sqrt{13}} y^{\prime}\right) \\
& =65 \\
& \text { (Simplified with calculator) } \rightleftharpoons 13 x^{\prime 2}+52 x^{\prime}=65 \\
& \begin{aligned}
& \mathrm{x}^{\prime 2}+4 \mathrm{x}^{\prime}=5 \\
& \mathrm{x}^{\prime 2}+4 \mathrm{x}^{\prime}+4=5+4 \text { (divide by 13) } \\
& \text { (complete the square) }
\end{aligned} \\
& \left(x^{\prime}+2\right)^{2}=9 \\
& \text { vertical lines: } x^{\prime}=1 \text { and } x^{\prime}=-5
\end{aligned}
$$

$$
(4)^{2}-4(6)(9)<0 \leadsto \text { ELLIPSE }
$$

To find the angle of rotation, we'll use
$\operatorname{Tan}(2 \ominus)=\frac{\mathrm{B}}{\mathrm{A}-\mathrm{C}}$

$$
\sin \theta=\frac{2}{\sqrt{5}}
$$

$$
\frac{2 \operatorname{Tan} \ominus}{1-\operatorname{Tan}^{2} \ominus}=\frac{4}{-3}
$$

We can pick either $-1 / 2$ or 2 ..

$$
\cos \ominus=\frac{1}{\sqrt{5}}
$$

If we choose 2,

$$
-6 \operatorname{Tan} \theta=4-4 \operatorname{Tan}^{2} \ominus
$$

$$
2 \operatorname{Tan}^{2} \ominus-3 \operatorname{Tan} \ominus-2=0
$$

$$
(2 \operatorname{Tan} \ominus+1)(\operatorname{Tan} \ominus-2)=0
$$

$$
\text { Tan } \ominus=-1 / 2 \quad \text { Tan } \ominus=2
$$

$$
6 x^{2}+4 x y+9 y^{2}+27 y=30
$$

$$
\begin{aligned}
& \mathrm{x}=\frac{1}{\sqrt{5}} \mathrm{x}^{\prime}-\frac{2}{\sqrt{5}} y^{\prime} \\
& \mathrm{y}=\frac{2}{\sqrt{5}} \mathrm{x}^{\prime}+\frac{1}{\sqrt{5}} y^{\prime}
\end{aligned}
$$

$$
\begin{gathered}
6\left(\frac{1}{\sqrt{5}} x^{\prime}-\frac{2}{\sqrt{5}} y^{\prime}\right)^{2}+4\left(\frac{1}{\sqrt{5}} x^{\prime}-\frac{2}{\sqrt{5}} y^{\prime}\right)\left(\frac{2}{\sqrt{5}} x^{\prime}+\frac{1}{\sqrt{5}} y^{\prime}\right)+9\left(\frac{2}{\sqrt{5}} x^{\prime}+\frac{1}{\sqrt{5}} y^{\prime}\right)^{2}+27\left(\frac{2}{\sqrt{5}} x^{\prime}+\frac{1}{\sqrt{5}} y^{\prime}\right)=30 \\
\frac{6}{5} x^{\prime}{ }^{2}-\frac{24}{5} x^{\prime} y^{\prime}+\frac{24}{5} y^{\prime 2}+\frac{8}{5} x^{\prime}{ }^{2}+\frac{4}{5} x^{\prime} y^{\prime}-\frac{16}{5} x^{\prime} y^{\prime}-\frac{8}{5} y^{\prime} \quad+\frac{36}{5} x^{\prime}{ }^{2}+\frac{36}{5} x^{\prime} y^{\prime}+\frac{9}{5} y^{\prime 2}+\frac{54}{\sqrt{5}} x^{\prime}+\frac{27}{\sqrt{5}} y^{\prime}=30
\end{gathered}
$$

Note: the $x^{\prime} y^{\prime}$ cancels to zero... (eliminating the rotation)

$$
\begin{aligned}
& \frac{6}{5} x^{\prime}+\frac{24}{5} y^{\prime 2}+\frac{8}{5} x^{\prime}-\frac{8}{5} y^{\prime}+\frac{36}{5} x^{\prime}{ }^{2}+\frac{9}{5} y^{\prime 2}+\frac{54}{\sqrt{5}} x^{\prime}+\frac{27}{\sqrt{5}} y^{\prime}=30 \\
& \frac{50}{5} x^{\prime}+\frac{25}{5} y^{\prime}{ }^{2}+\frac{54}{\sqrt{5}} x^{\prime}+\frac{27}{\sqrt{5}} y^{\prime}=30 \quad \square 10 x^{\prime 2}+5 y^{\prime 2}+\frac{54}{\sqrt{5}} x^{\prime}+\frac{27}{\sqrt{5}} y^{\prime}=30
\end{aligned}
$$

8) $16 x^{2}-24 x y+9 y^{2}+110 x-20 y+100=0$

To find the angle of rotation, we'll use

$$
(24)^{2}-4(16)(9)=0 \quad \text { PARABOLA }
$$

$$
\operatorname{Tan}(2 \ominus)=\frac{-24}{16-9} \quad \sin \ominus=\frac{4}{5}
$$

$$
\frac{2 \operatorname{Tan} \ominus}{1-\operatorname{Tan}^{2} \ominus}=\frac{-24}{7}
$$

$$
\cos \ominus=\frac{3}{5}
$$

$$
14 \operatorname{Tan} \ominus=-24+24 \operatorname{Tan}^{2} \ominus
$$

$$
12 \operatorname{Tan}^{2} \ominus-7 \operatorname{Tan} \ominus-12=0
$$

$$
(3 \operatorname{Tan} \ominus-4)(4 \operatorname{Tan} \ominus+3)=0
$$

$$
\operatorname{Tan} \ominus=4 / 3 \quad \text { Tan } \ominus=-3 / 4
$$

SOLUTIONS

$$
16 x^{2}-24 x y+9 y^{2}+110 x-20 y+100=0
$$

$$
\begin{aligned}
& x=\frac{3}{5} x^{\prime}-\frac{4}{5} y^{\prime} \\
& y=\frac{4}{5} x^{\prime}+\frac{3}{5} y^{\prime}
\end{aligned}
$$

We can select either $4 / 3$ or $-3 / 4$ to rotate and remove the $x y$ term..

If we choose $4 / 3$,

Thanks for visiting. (Hope it helps!)

If you have questions, suggestions, or requests, let us know
Cheers

Also, at TeachersPayTeachers and TES
And, Mathplane.ORG for mobile and tablets

