Area and Perimeter of Polygons 2

Examples and Practice Exercises (with solutions)

Example: Find the area and perimeter of the figure.

Since the quadrilateral has 2 pairs of adjacent sides that are congruent, it's a kite.
And, the diagonals of a kite are perpendicular.

We can find the geometric mean
(altitude to hypotenuse) to find the length of the other diagonal!
$\frac{4}{x}=\frac{x}{9} \quad x=6$, so the diagonal is 12

The area of the kite is $\frac{1}{2}($ diagonal 1$)($ diagonal 2$)=$

$$
\frac{1}{2}(12)(13)=78
$$

Since the diagonals form 4 right triangle, we can use Pythagorean Theorem to find the sides of the kite...

$$
\text { The perimeter is } 10 \sqrt{13}
$$

Since all sides of a rhombus are congruent, the perimeter $=4 \times 17=68$ units

To find the area, the most direct approach is finding the length of the other diagonal.
***The diagonals of a rhombus are perpendicular bisectors!

Then, recognizing the 8-15-17 Pythagorean Triple.. the other diagonal is 30

Area $=\frac{1}{2} \mathrm{~d}_{1} \mathrm{~d}_{2}=\frac{1}{2}(16)(30)=240$ sq. units

To find the area, we'll need to determine the altitude (height).
Fortunately, the altitudes form special right triangles.

30-60-90 right triangle: hypotenuse is 2 x the small leg..
So, the height is $8 \ldots$
Then, the other leg is $8 \mathrm{~N} \sqrt{3}$
And, since the height is 8 , the other part of the base is $8 \ldots$ 45-45-90 right triangle...

Perimeter is the sum of all the sides: $48+8 / \sqrt{2}+8 / \sqrt{3}$

$$
\begin{aligned}
\text { Area }=\frac{1}{2}(\text { base } 1+\text { base } 2)(\text { height }) & =\frac{1}{2}(32+8 \sqrt{3})(8) \\
& =128+32 \sqrt{3}
\end{aligned}
$$

Example: Find the area and perimeter of the triangle.

First, we drop an altitude and see that we can use trigonometry and geometry tools to find the other parts...

$$
\left.\sin \left(15^{\circ}\right)=\frac{\text { height }}{12} \quad \text { height }=7.8 \quad \text { (approximately }\right)
$$

Since the right part is 45-45-90 right triangle, the right part of the base is 7.8

Then, using the Pythagorean Theorem the left part of the base is 9.12

$$
9.12^{2}+7.8^{2}=12^{2}
$$

Perimeter of triangle $=12+16.92+11.03=39.95$ approximately

Area $=\frac{1}{2}(16.92)(7.8)=66$ approximately

Example: What is the perimeter and area of
Area of Regular Polygons: Trigonometry a regular pentagon with radius of 7 ?

Method 1: Area $=\frac{1}{2}($ apothem $)($ perimeter $)$
From the diagram, \quad Exterior angle $=\frac{360}{5}=72^{\circ}$
Therefore, each interior angle is $180-72=108^{\circ}$

$$
\begin{aligned}
\sin (54) & =\frac{a}{7} \\
\text { apothem } \mathrm{a} & =7 \sin (54)=5.66 \\
\cos (54) & =\frac{\mathrm{s}}{7} \\
1 / 2 \text { of each side } & =\mathrm{s}=7 \cos (54)=4.11 \\
\text { apothem } & =5.66 \\
\text { perimeter } & =10 \times 4.11=41.1
\end{aligned}
$$

Area $=\frac{1}{2}(5.66)(41.1)=116.3$ (approximately)

$$
\sin (54)=\frac{a}{7}
$$

$$
\mathrm{a}=7 \sin (54)=5.66
$$

$$
\mathrm{b}=7 \cos (54)=4.11
$$

Area of triangle: $\frac{1}{2}(4.11)(5.66)=11.63$

Area of pentagon: $10 \times 11.63=116.3$

Example: Find the area of 15 sided regular n-gon with perimeter 180 feet.

To find the area, we want the apothem and perimeter...
The perimeter is given: 180 feet...

$$
\text { Area } \left.=\frac{1}{2}(\text { apothem }) \text { (perimeter }\right)
$$

To find the measure of the apothem, draw a diagram:
Sum of the exterior angles is 360°.
So, each exterior angle measure is $360 / 15=24$ degrees...
therefore, each interior angle is $180-24=156$ degrees....

And, the radius bisects the angle into 78 degree angles..

Area $=\frac{1}{2}(28.23$ feet $)(180$ feet $)=2540$ square feet

$$
\frac{180}{15}=12 \mathrm{feet} / \text { side }
$$

$$
\tan (78)=\frac{a}{6}
$$

apothem $\mathrm{a}=6 \tan (78)=28.23$

Find the area of the triangle.

Method 1: Encasement

Method 2: Hero's Formula

Method 3: Finding the height...

$\mathrm{h}=$ distance between $(0,7)$ and $\left(\frac{42}{25}, \frac{357}{75}\right)$

Area $=\frac{1}{2}$ (base)(height) $\quad \frac{1}{2}(10)(2.8)=14$

$$
\begin{aligned}
& \text { semiperimeter }=\frac{\sqrt{37}+\sqrt{29}+10}{2}=\mathrm{s} \quad \text { approximately } 10.73 \\
& \begin{aligned}
\text { Area }=\sqrt{\mathrm{s}(\mathrm{~s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})} & =\sqrt{10.73(4.65)(5.35)(.73)} \\
& =14
\end{aligned}
\end{aligned}
$$

$$
\text { Area }=\frac{1}{2} \text { (base)(height) }
$$

We need to find the height...
line segment through $(-2,2)$ and $(6,8) \quad y-2=\frac{3}{4}(x+2)$

$$
\text { slope of height is }-4 / 3
$$

line segment through $(0,7) \quad y=\frac{-4}{3} x+7$
find the intersection using substitution:

$$
\begin{array}{rlrl}
\frac{-4}{3} x+7-2 & =\frac{3}{4}(x+2) & & \\
\frac{-4}{3} x+5 & =\frac{3}{4} x+\frac{3}{2} & & \\
-16 x+60 & =9 x+18 & & \\
42 & =25 x & y & =\frac{-168}{75}+7 \\
x & =\frac{42}{25} & y & =\frac{357}{75}
\end{array}
$$

Part I: Answer the following:

Square; apothem $=5$ feet
What is the area?

Square; diagonal $=16 \mathrm{~cm}$
What is the area?
What is the length of the apothem?

Equilateral triangle; sides $=7$ inches
What is the area?

Equilateral triangle; apothem $=5$
What is the area?
What is the length of each side?

Rectangle; diagonal $=26$

$$
\text { width }=10
$$

What is the perimeter?
What is the area?

Part II: Find the area of each shaded region:
Area of shapes and regular polygons

1) Triangle inside a square:

2) A regular hexagon with sides measuring 6 feet:

3) Rectangle inscribed in a regular hexagon:

a) the length of a side is 8
b) the length of an apothem is 8
c) the length of a radius is 8

Part IV:

Parallelogram:

What is the perimeter?
What is the area?

Trapezoid:
What is the perimeter?

What is the area?

Part V:
Area of shapes and regular polygons

1) Find the angles formed by
a) 2 consecutive radii
b) the radius and adjoining side
in a regular 1) pentagon
a)
b)
2) hexagon
a)
b)
3) octagon
a)
b)
4) decagon
a)
b)
5) Is this a regular 9 sided polygon?

6) If the area of the shaded region is 168 square units, what is y ?

Find the area and perimeter of each figure

1)

2)

3)

4)
(parallelogram)

5)
(parallelogram)

7)

8)

6) (rectangle)

9) (kite)

10) (circle)

11)

LanceAF \#39 7-1-12
In its 1000 year history, no one ever passed Mr. Devlin's Geometry class.

Solutions $-\rightarrow$

Square; apothem $=5$ feet
What is the area?
The apothem connects the center to the midpoint of a side..
(If the apothem is 5^{\prime}, then $1 / 2$ of each side is 5^{\prime})

$$
\text { area }=(\text { side })(\text { side })=(10 \mathrm{ft})(10 \mathrm{ft})=100 \text { square feet }
$$

Square; diagonal $=16 \mathrm{~cm}$
What is the area?
What is the length of the apothem?

Since the diagonal divides the square into two 45-45-90 triangles, the sides are

$$
\frac{16}{\sqrt{2}}=8 \sqrt{2}
$$

Area $=(\text { side })^{2}=128$ square cm
Then, the apothem is $1 / 2$ of each side:

Equilateral triangle; sides $=7$ inches
What is the area?

Since it is an equilateral \triangle

$$
\begin{aligned}
& \text { area }=\frac{1}{2}(\text { base })(\text { height }) \quad \begin{array}{l}
\text { the altitude forms a } 30-60-90 \\
\text { right triangle... }
\end{array} \\
& \text { area }=\frac{1}{2}(7)\left(\frac{7}{2} \sqrt{3}\right)=\frac{49 \sqrt{3}}{4} \text { sq. units }
\end{aligned}
$$

Equilateral triangle; apothem $=5$
What is the area? $75 / \sqrt{3}$
What is the length of each side?

Rectangle; diagonal $=26$
width $=10$
What is the perimeter? 68
What is the area?
120

Since it is an equilateral \triangle, the apothem and radius will form a 30-60-90 right \triangle with small side $=5$
the area of the right triangle
is $\frac{1}{2}$ (base)(height) $=\frac{1}{2} \cdot 5 \sqrt{3} \cdot 5$
and, since there are six right triangles inside the entire triangle, the area is $\quad 75 / \sqrt{3}$

The diagonal is the hypotenuse of a right triangle.. Using pythagorean theorem (or recognizing 5-12-13), the length of the rectangle is 24

Part II: Find the area of each shaded region:

1) Triangle inside a square:

SOLUTIONS
Area of shapes and regular polygons

The figure is an equilateral triangle inside a square.
Area of square $=s^{2}=(10)^{2}=100$
Area of triangle $=\frac{1}{2}$ (base)(height)

$$
\begin{aligned}
& =\frac{1}{2}(10)(5 \sqrt{3}) \\
& =25 \sqrt{3}
\end{aligned}
$$

30-60-90 right \triangle

$$
\text { shaded area }=\mathrm{A}_{\mathrm{S}}-\mathrm{A}_{\mathrm{T}}
$$

$$
=100-25 \sqrt{3}
$$

2) A regular hexagon with sides measuring 6 feet:

3) Rectangle inscribed in a regular hexagon:

$$
\text { Area of rectangle }=\text { length } \mathrm{x} \text { width... }
$$ So, we need to find the length:

Each interior angle measures 120 degrees:

$$
\frac{(6-2) \cdot 180}{6}=120
$$

Base of the triangle $=6 \sqrt{3}$
Height of the triangle $=3$
Area $=\frac{1}{2} \mathrm{bh}=\begin{gathered}9 \sqrt{3} \\ \text { square feet }\end{gathered}$

So, the length of the entire triangle base (i.e. the length of the rectangle $)=7 \sqrt{3}$

$$
\text { Area rectangle }=7 \times 7 / \sqrt{3}=49 \sqrt{3}
$$

a) the length of a side is 8

Each interior angle of a regular hexagon is 120 degrees...
So, there are 6 equilateral triangles inside the hexagon...

Area of equilateral triangle $=16 \sqrt{3}$
therefore, the area of the hexagon is
$6 \times($ area of triangle $)=96 \sqrt{3} 166.3$
b) the length of an apothem is 8

Again, we have a 30-60-90 triangle.. The big length is $8 \ldots$ So, the small length is

$$
\frac{8}{\sqrt{3}}
$$

c) the length of a radius is 8

Since this is a (regular) hexagon, the length of a radius is the same as the length of a side...

The area of this right triangle is

$$
\frac{1}{2}(8)\left(\frac{8}{\sqrt{3}}\right)=\frac{32}{\sqrt{3}}
$$

therefore, the are of the hexagon is

Therefore, the area is the same as the hexagon in a)

$$
96 \sqrt{3}
$$

Part IV:

Parallelogram:

What is the perimeter?
opposite sides of parallelogram are congruent, so perimeter $=6+8+6+8=28$

What is the area?

$$
\text { area }=(\text { base })(\text { height })=(8)(3 \sqrt{3})
$$

$$
24 \sqrt{3}
$$

since the right triangle has hypotenuse 6 and base 3 , it must be a 30-60-90 right triangle.. (the hypotenuse is $2 x$ the length).. Therefore, the height of the parallelogram is $3 \sqrt{3}$

Trapezoid:

What is the perimeter?
$10+10+10+12+2 \sqrt{11}=$
Pythagorean Theorem:
What is the area? $42+2 \sqrt{11}$

$$
\begin{aligned}
\text { Area } & =\frac{1}{2}(\text { base1 }+ \text { base2 })(\text { height }) \\
& =\frac{1}{2}(20+2 \sqrt{11})(10)=100+10 \sqrt{11}
\end{aligned}
$$

Part V:

1) Find the angles formed by
a) 2 consecutive radii
b) the radius and adjoining side in a regular 1) pentagon
a) 72°
b) 54°
2) hexagon
a) 60°
b) 60°
3) octagon
a) 45°
b) 62.5°
4) decagon
a) 36°
b) 72°

$360 \div 5=72^{\circ}$

Since the 5 triangles are isosceles....

$$
\text { angle }+ \text { angle }+72=180
$$

$$
\text { angle }=54^{\circ}
$$

Since the radii angle is 60 , the other two angles add up to 180 ..

Therefore, the other angles are 60 and 60 ..

Since the radii angle is 45 degrees. the 2 base angles must add up to 135 degrees...

$$
62.5 \text { and } 62.5
$$

The radius/side angles are 72 degrees...
2) Is this a regular 9 sided polygon?

No, it is not...
It is 'equilateral'...
but, it is not 'equiangular'...

3) If the area of the shaded region is 168 square units, what is y ?

$$
\begin{aligned}
& (2 y)^{2}-\frac{1}{2}(8)(y)=168 \\
& 4 y^{2}-4 y=168 \\
& 4\left(y^{2}-y-42\right)=0 \\
& 4(y+6)(y-7)=0 \\
& y=-6 \text { or } 7 \ldots \text { (but, it cannot be negative...) }
\end{aligned}
$$

Check:
Area of square: $14 \times 14=196$
Area of triangle: $1 / 2(8)(7)=28$
Shaded area $=196-28=168 \mathrm{~V}$
1)

2)

3)

$$
\text { perimeter: } 18+6 \sqrt{2}
$$

4)

> (parallelogram)

$$
5^{2}+12^{2}=13^{2}=(16)(12)=192
$$

7)

perimeter: 24
area $=\frac{1}{2}($ base $1+$ base 2$)($ height $)$

$$
=\frac{1}{2}(9+6)(4)=30
$$

10) (circle)

Note: triangle inscribed in semicircle is right triangle..
perimeter/circumference: 10π
area $=25 \pi$
5) (parallelogram)

perimeter: 44
8)

11)

6) (rectangle)

area $=112 / \sqrt{2}$
perimeter $=28+16 / \sqrt{2}$
9) (kite)

perimeter $=24$
area $=\frac{1}{2}($ diagonal 1$)($ diagonal 2$)$

$$
\frac{1}{2}(6)(4+2 \sqrt{10}) \bumpeq 40.97
$$

Pythagorean Theorem: $a^{2}+b^{2}=c^{2}$
rectangle: area $=$ (length $)($ width $)$ perimeter $=2($ length $)+2($ width $)$
triangle: area $=(1 / 2)$ (base)(height)
perimeter $=($ side $)+($ side $)+($ side $)$
circle: area $=T{ }^{(\text {(radius })}{ }^{2}$
circumference $=2 \Pi\lceil$ (radius)
kite: area $=(1 / 2)($ diagonal 1$)($ diagonal 2$)$ (or, find area of each triangle)
trapezoid: area $=(1 / 2)$ (base1 + base2 $)$ (height)

Thanks for visiting. (Hope it helped!)
Find more geometry content at mathplane.com
Enjoy

Also, at our store on TeachersPayTeachers
And, Mathplane Express for mobile at Mathplane.ORG

