25+ questions (with solutions)

Topics include exponents, graphing functions, logarithms, matrices, quadratics, and more...

1) Simplify

a)
$$9^{\frac{1}{2}}$$

2) For the piecewise function

$$f(x) = \begin{cases} 2x + 1 & \text{if } x \le 0 \\ 3 & \text{if } 0 < x \le 6 \\ x^2 & \text{if } x > 6 \end{cases} \qquad f(8) = f(0) = f(-3) = f(-3) = f(-3) = f(-3)$$

3) Identify the domain and range of each function. (write answers in interval notation)

a)
$$y = |x| - 2$$

b)
$$y = \sqrt{1 + x} - x$$

a)
$$y = |x| - 2$$
 b) $y = \sqrt{1 + x} - 2$ c) $y = \sqrt{25 - x^2}$ d) $y = 5^X$

d)
$$y = 5^{X}$$

D:

D:

D:

R:

R:

R:

R:

- 4) $1 \sqrt{13 x} = x$
- 5) For the quadratic $y = 2x^2 12x + 10$, answer the following. Then, sketch the graph.

y-intercept:

x-intercept(s):

axis of symmetry:

vertex:

equation in vertex form:

- 6) Simplify the complex expressions (into standard form)
 - a) i^{18}
- b) (3+i)(3-i)
- c) $\frac{2+i}{5+i}$ d) $(4i+7)^2$

7) Solve

a)
$$x^4 - 10x^2 + 9 = 0$$

b)
$$3x^3 + 15x^2 = 0$$

c)
$$9x^3 + 36x^2 - x = 4$$

8) f(x) is a function with domain [-4, 4],

Sketch the rest of the graph if

b)
$$f(x)$$
 is odd

- 9) What is the equation of a parabola with intercepts (-4, 0), (7, 0), and (0, -14)?
- 10) How many x-intercepts in the following quadratics?

a)
$$3x^2 - 7x + 10$$

b)
$$4x^2 - 9x + 1$$

c)
$$9x^2 - 6x + 1$$

11) Solve for x.

a)
$$\log_X 32 = 5$$

b)
$$\log_3 (1 - x) = 4$$
 c) $\log_{25} + \log_{4} = x$ d) $\ln e = x$

c)
$$\log_{25} + \log_{4} = x$$

d)
$$lne = x$$

12) What are the linear equations?

c) parallel to
$$y = 2x$$
 and passing through $(1, -1)$

13) Graph the absolute value function y = -|x - 5| + 3

What is the y-intercept?

What are the x-intercepts?

14) Find a cubic with roots -5, 1, and 6 AND the coefficient of \mathbf{x}^2 is 8

15) Using long division or synthetic division, find $x^4 - 3x^2 + 2x + 10 \div (x - 1)$

16) Answer for the following matrices:

$$A = \begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 4 & -2 \\ 5 & 1 \end{bmatrix} \qquad C = \begin{bmatrix} 0 & 3 & -3 \\ 6 & 1 & 7 \end{bmatrix}$$

- a) A B
- b) BC

- 17) You deposit 10,000 dollars into a bank that offers 4% annual interest. How much money will you have after 3 years, if
 - a) compounded semi-annually
 - b) compounded monthly
 - c) compounded continuously
- 18) Complete the square

$$x^2 + 8x - 17$$

$$3x^2 - 18x + 1$$

$$x^2 + 7x + 10$$

19) Solve the system

$$x + 2y - z = -3$$

 $-x + 3z = 11$
 $3x + y + 2z = 1$

- a) Elimination/substitution method (w/o calculator)
- OR
- b) Matrix/solving simultaneous equations (calculator)

20) List all the *possible* rational roots of $3x^3 - 5x^2 + 5x - 2$

21)
$$x + \frac{2}{x-1} = \frac{x-3}{1-x}$$

22) Answer the following for $g(x) = \frac{3x-6}{x+1}$

y-intercept:

x-intercept:

vertical asymptote:

horizontal asymptote:

Sketch the graph of g(x)

23) A kid launches a water balloon from a balcony. The parabolic equation of the balloon is expressed as $h(t) = -16t^2 + 80t + 96$

where t = time in seconds h(t) = height from the ground level (feet)

- a) How high is the balcony?
- b) What is the maximum height the water balloon reaches?
- c) When does the balloon hit the ground?
- 24) Answer the following:
 - a) What is the degree of $f(x) = 3 2x^2 5x$?
 - b) For $x^{100} + x^5 3x^3 + 1$, is (x 1) a factor? Is (x + 1) a factor?
 - c) What is the remainder of $2x^5 + x^2 + x + 13 \div (x+2)$
- 25) What is the equation of a parabola that passes through (1, 7) (-3, 67) and (4, 46)? Hint: $ax^2 + bx + c = y$

27) Determine the equation of an ellipse with these characteristics:

 $major\ axis=12$

minor axis = 8

foci are on the x-axis

center is the origin

28) Sam buys 25-cent and 2-cent stamps to mail postcards. He purchased 48 stamps and paid \$7.40. How much of each stamp did he buy?

29) A box's height is 2 feet larger than its width. And, the height is 5 feet smaller than its length. If the volume of the box is 30 cubic feet, what are the dimensions?

SOLUTIONS-→

1) Simplify

a)
$$9^{\frac{1}{2}}$$
 3

b)
$$9^{\frac{-1}{2}}$$
 $\frac{1}{3}$

d)
$$27^{\overline{3}}$$

e)
$$-2^2$$
 -4

a) $9^{\frac{1}{2}}$ 3 b) $9^{\frac{1}{2}}$ $\frac{1}{3}$ c) $(-6)^2$ d) $27^{\frac{2}{3}}$ e) -2^2 $\frac{-1 \cdot 2^2}{-4}$ (order of operations: exponents before

2) For the piecewise function

$$f(x) = \begin{cases} 2x+1 & \text{if } x \le 0 \\ 3 & \text{if } 0 < x \le 6 \\ x^2 & \text{if } x \ge 6 \end{cases} \qquad f(8) = (8)^2 = 64$$

$$f(0) = 2(0) + 1 = 1$$

$$f(-3) = 2(-3) + 1 = -5$$

$$f(8) = (8)^2 = 64$$

$$f(0) = 2(0) + 1 = 1$$

$$f(-3) = 2(-3) + 1 = -4$$

3) Identify the domain and range of each function. (write answers in interval notation)

a)
$$y = |x| - 2$$

b)
$$y = \sqrt{1 + x} - 2$$

b)
$$y = \sqrt{1+x} - 2$$
 c) $y = \sqrt{25-x^2}$ d) $y = 5^x$

d)
$$y = 5^{X}$$

D:
$$(-\infty, +\infty)$$
 D: $[-1, +\infty)$

$$D: [-1, +\infty)$$

D:
$$[-5, 5]$$
 D: $(-\infty, +\infty)$

R:
$$[-2, +\infty)$$
 R: $[-2, +\infty)$

R:
$$[-2, +\infty)$$

4)
$$1 - \sqrt{13 - x} = x$$

Isolate the radical:
$$-\sqrt{13-x} = x-1$$

$$\sqrt{13-x} = -x+1$$

Square both sides:
$$13 - x = x^2 - x$$

$$x^2 - x - 12 = 0$$

$$\sqrt{13} - (-3) = -3$$

$$1 - \sqrt{13 - 4} = 4$$

5) For the quadratic $y = 2x^2 - 12x + 10$, answer the following. Then, sketch the graph.

let
$$x = 0$$
, then $y = 10$

let
$$y = 0$$
, then $0 = 2x^2 - 12x + 10$

axis of symmetry:
$$x = 3$$

$$x = 1, 5$$

AOS: midpoint of zeros is 3..

0 = 2(x - 1)(x - 5)

or,
$$\frac{-b}{2a} = \frac{-(-12)}{2(2)} = 3$$

equation in vertex form:

Vertex is on axis of symmetry

$$y = 2(x^2 - 6x + 9) + 10 - 2(9)$$

$$y = 2(x - 3)^2 - 8$$

let
$$x = 3$$
, then $y = -8$

SOLUTIONS

6) Simplify the complex expressions (into standard form)

b)
$$(3+i)(3-i)$$

$$\frac{2}{i^{2}}$$
, 16

$$9 + 3i - 3i - i^2$$

7) Solve

a)
$$x^4 - 10x^2 + 9 = 0$$

$$(x^2-1)(x^2-9)=0$$

$$(x + 1)(x - 1)(x + 3)(x - 3) = 0$$

$$x = -1, 1, -3, 3$$

c)
$$\frac{2+i}{5+i} \cdot \frac{5-i}{5-i}$$

$$\frac{10 + 5i - 2i - i}{25 - i^2}$$

$$\frac{11}{26} + \frac{3i}{26}$$

b)
$$3x^{3} + 15x^{2} = 0$$

$$3x^2(x+5)=0$$

$$x = -5, 0$$

d)
$$(4i + 7)^2$$

$$16i^2 + 28i + 28i + 49$$

$$-16 + 56i + 49$$

c)
$$9x^3 + 36x^2 - x = 4$$

$$9x^3 + 36x^2 - x - 4 = 0$$
 (factor by grouping)

$$9x^{2}(x+4) + (-1)(x+4) = 0$$

$$(9x^2-1)(x+4)=0$$

$$(3x + 1)(3x - 1)(x + 4) = 0$$

$$x = -4, \frac{1}{3}, \frac{-1}{3}$$

8) f(x) is a function with domain [-4, 4],

Sketch the rest of the graph if

b) f(x) is odd

9) What is the equation of a parabola with intercepts (-4, 0), (7, 0), and (0, -14)?

$$y = a(x - x_1)(x - x_2)$$

$$y = a(x+4)(x-7)$$

$$-14 = a(0+4)(0-7)$$

(plug in 3rd point to find 'a')

$$a = \frac{1}{2}$$

 $y = \frac{1}{2}(x+4)(x-7)$

10) How many x-intercepts in the following quadratics? **find discriminants

a)
$$3x^2 - 7x + 10$$

b)
$$4x^2 - 9x + 1$$

c)
$$9x^2 - 6x + 1$$

$$b^2 - 4ac = 49 - 4(3)(10) = -71$$
 $b^2 - 4ac = 81 - 4(4)(1) = 65$

$$b^2 - 4ac = 81 - 4(4)(1) = 65$$

$$b^2 - 4ac = 36 - 4(9)(1) = 0$$

zero intercepts

two intercepts

one intercept

SOLUTIONS

11) Solve for x.

a)
$$\log_{X} 32 = 5$$

 $x^{5} = 32$
 $x = 2$

b)
$$\log_3 (1 - x) = 4$$

$$3^4 = 1 - 2$$
$$x = -80$$

c)
$$\log_{25} + \log_{4} = x$$

d)
$$lne = x$$

$$\log(25 \text{ x 4}) = \log 100$$

$$x = 2$$

$$\log_e e = x$$

- 12) What are the linear equations?
 - a) x-intercept, 6 (6, 0) y-intercept, -3 (0, -3)

slope =
$$\frac{0 - (-3)}{6 - 0} = \frac{1}{2}$$

since we know the y-intercept, we'll use slope intercept form:

$$y = \frac{1}{2}x - 3$$

b) vertical line through (3, 6)

c) parallel to y = 2x and passing through (1, -1)

x = 1

slope is 2 point is (1, -1)

use point slope form:

$$y+1=2(x-1)$$

13) Graph the absolute value function y = -|x - 5| + 3

What is the y-intercept?

(0, -2)

What are the x-intercepts?

(0) = -|x - 5| + 3 (isolate the absolute value)

$$-3 = -|x - 5|$$

3 = |x - 5| ("split" the absolute value)

(8, 0) and (2, 0)

14) Find a cubic with roots -5, 1, and 6 AND the coefficient of x 2 is 8

$$(x + 5)(x - 1)(x - 6)$$

$$(x+5)(x^{2}-7x+6) = x^{3}-7x^{2}+6x + 5x^{2}-35x+30 - x^{3}-2x^{2}-29x+30$$

multiply by -4 to change coefficients

$$-4x^3 + 8x^2 + 116x - 120$$

15) Using long division or synthetic division, find $x^4 - 3x^2 + 2x + 10 \div (x - 1)$

$$x^3 + x^2 - 2x + \frac{10}{x-1}$$

subtract
$$\begin{array}{c} x^3 - 3x^2 \\ x^3 - x^2 \\ \hline -2x_2^2 + 2x \end{array}$$

subtract
$$\frac{-2x^2 + 2x}{-2x^2 + 2x}$$
$$0 + 10$$

SOLUTIONS

16) Answer for the following matrices:

$$A = \begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 4 & -2 \\ 5 & 1 \end{bmatrix} \qquad C = \begin{bmatrix} 0 & 3 & -3 \\ 6 & 1 & 7 \end{bmatrix}$$
a) $A - B$
b) BC
c) BA
Note: $BA \neq AB$
d) $2A + B$

$$\begin{bmatrix} 1 - 4 & 2 - (-2) \\ -1 - 5 & 0 - 1 \end{bmatrix} = \begin{bmatrix} 4 & -2 \\ 5 & 1 \end{bmatrix} \begin{bmatrix} 0 & 3 & -3 \\ 6 & 1 & 7 \end{bmatrix}$$

$$\begin{bmatrix} 4 & -2 \\ 5 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -1 & 0 \end{bmatrix} \qquad \begin{bmatrix} 2(1) & 2(2) \\ 2(-1) & 2(0) \end{bmatrix} + \begin{bmatrix} 4 & -2 \\ 5 & 1 \end{bmatrix} = \begin{bmatrix} -3 & 4 \\ -6 & -1 \end{bmatrix}$$

$$\begin{bmatrix} -3 & 4 \\ -6 & -1 \end{bmatrix}$$

$$\begin{bmatrix} -12 & 10 & -26 \\ 6 & 16 & -8 \end{bmatrix}$$

$$\begin{bmatrix} 6 & 8 \\ 4 & 10 \end{bmatrix}$$

$$\begin{bmatrix} 6 & 8 \\ 4 & 10 \end{bmatrix}$$

17) You deposit 10,000 dollars into a bank that offers 4% annual interest. How much money will you have after 3 years, if

a) compounded semi-annually

 $A = 10,000(1 + .02)^6 = 11,261.62$

(6 total compounds; 2% per compound)

OR

b) compounded monthly

c) compounded continuously

 $A = 10,000(1 + \frac{.04}{12})^{36} = 11,272.72$

(.04/12 per month; 36 months)

 $A = 10.000e^{.04(3)} = 11,274.97$

(4% per year; 3 years)

 $A = P(1 + \frac{r}{n})^{nt}$

A =future amount

P = principal amount

r = interest rate

n = number of times theamount is compounded per

t = number of years

 $A = Pe^{rt}$ (continuous compounding)

18) Complete the square

19) Solve the system

x + 2y - z = -3-x + 3z = 11

3x + y + 2z = 1

combine 1st and 3rd: x + 2y - z = -3

-5x -5z = -5

(w/o calculator) combine 2nd and result of 1st/3rd: -5x - 5z = -5x + z = 1substitute 2nd: 4z = 12x + 2y - z = -3 -2 + 2y - 3 = -3 y = 1(Plug in answers to check)

a) Elimination/substitution method

b) Matrix/solving simultaneous equations (calculator)

or
$$\begin{bmatrix} 1 & 2 & -1 \\ -1 & 0 & 3 \\ 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -3 \\ 11 \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 2 & -1 \\ -1 & 0 & 3 \\ 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} -3 \\ 11 \\ 1 \end{bmatrix}$$
SOLUTION
$$\begin{bmatrix} -2 \\ 1 \\ 3 \end{bmatrix}$$

20) List all the *possible* rational roots of $3x^3 - 5x^2 + 5x - 2$

Constant: -2 "factors of p" 1, 2 Lead coefficient: 3 "factors of q" 1, 3

possible rational roots: $\pm 1 \pm 2 \pm \frac{1}{3} \pm \frac{2}{2}$

SOLUTIONS

21)
$$x + \frac{2}{x-1} = \frac{x-3}{1-x}$$
 $x = \frac{x-3}{1-x}$ $\frac{-2}{x-1}$ $\frac{(-1)}{(-1)}$

$$x = \frac{x}{1-x} \qquad \frac{x}{x-1} \qquad \frac{(-1)}{(-1)}$$

$$x(1 - x) = x - 1$$

test solutions:

$$x = \frac{x-3}{1-x} + \frac{2}{1-x}$$

$$x - x^2 + x + 1 = 0$$
 $-x^2 + 1 = 0$

-1:
$$-1 + \frac{2}{-2} = \frac{-4}{2}$$

-2 = -2 \vee

$$x = \frac{x-1}{1-x}$$
 (cross multiply) $x = -1$ or $x = -1$

$$-x^{2} + 1 = 0$$

$$x = -1 \text{ or } 1$$

1:
$$1 + \frac{2}{0} = \frac{-2}{0}$$

x = -1

undefined! (extraneous)

22) Answer the following for $g(x) = \frac{3x-6}{x+1}$

y-intercept:
$$(0, -6)$$

$$g(0) = \frac{-6}{1} = -6$$

$$0 = \frac{3x - 6}{x + 1}$$
 $x = 2$

vertical asymptote: x = -1

function is undefined when x + 1 = 0x = -1

horizontal asymptote: y = 3

function is neither top heavy nor bottom heavy; coefficients are 3/1 = 3

Sketch the graph of g(x)

where
$$t = time$$
 in seconds

h(2.5) = 196

(0, 96)

h(t)

- 24) Answer the following: -16(t+1)(t-6) = 0 t = -1 or 6
 - a) What is the degree of $f(x) = 3 2x^2 5x$? the degree is 2

(using factor theorem) plug in the opposite of the constant --- $(1)^{100} + (1)^5 - 3(1)^3 + 1 = 0$

b) For
$$x^{100}+x^5-3x^3+1$$
, is $(x-1)$ a factor? Is $(x+1)$ a factor? c) What is the remainder of $2x^5+x^2+x+13$: $(x+2)$

$$(-1)^{100} + (-1)^5 - 3(-1)^3 + 1 = 4$$

(2.5, 196)

(Use remainder theorem) plug in -2:
$$2(-2)^5 + (-2)^2 + (-2) + 13 = -49$$
 Remainder is -49

25) What is the equation of a parabola that passes through (1, 7) (-3, 67) and (4, 46)?

$$Hint: ax^2 + bx + c = y$$

$$(1, 7)$$
: $a(1)^2 + b(1) + c = 7$

$$a+b+c=7$$

solve the 3 equations with 3 unknowns:

$$4x^2 - 7x + 10$$

(-3, 67):
$$a(-3)^2 + b(-3) + c = 67$$
 $9a - 3b + c = 67$

$$9a - 3b + c = 67$$

$$a = 4$$

 $b = -7$

$$(4, 46)$$
: $a(4)^2 + b(4) + c = 46$

$$16a + 4b + c = 46$$

$$c = 10$$

26)
$$-3|x-8|+7=-20$$

$$|2x + 6| = x + 5$$

$$-3|x-8|=-27$$

$$2x + 6 = x + 5$$
 OR $2x + 6 = -(x + 5)$

SOLUTIONS

$$|x - 8| = 9$$

$$x = 17 \text{ or } -1$$

$$x = -1$$
 $2x + 6 = -x - 5$

$$2x + 6 = -x -$$

$$3x = -11$$

$$x = -11/3$$

major axis
$$= 12$$

If major axis is 12, the a value is 6.

minor axis = 8

If the minor axis is 8, the b value is 4

foci are on the x-axis

Since foci are on the x-axis, the ellipse is 'horizontal'

center is the origin

$$\frac{(x-0)^2}{6^2} + \frac{(y-0)^2}{4^2} = 1$$

$$\frac{x^2}{36} + \frac{y^2}{16} = 1$$

28) Sam buys 25-cent and 2-cent stamps to mail postcards. He purchased 48 stamps and paid \$7.40. How much of each stamp did he buy?

let
$$x = \#$$
 of 25-cent stamps
 $y = \#$ of 2-cent stamps (using substitution)
 $x = 48 - y$
then, $.25(48 - y) + .02y = 7.40$
 $.25(x) + .02(y) = 7.40$
 $.25(x) + .02(y) = 7.40$
 $.25(x) + .02(y) = 7.40$

$$y = 20...$$

then, $x + 20 = 48$
 $x = 28$

28 25-cent stamps 20 2-cent stamps

29) A box's height is 2 feet larger than its width. And, the height is 5 feet smaller than its length. If the volume of the box is 30 cubic feet, what are the dimensions?

Volume = (length)(width)(height)

$$30 = (h + 5)(h - 2)(h)$$

$$30 = (h + 5)(h^2 - 2h)$$

$$30 = h^3 + 5h^2 - 2h^2 - 10h$$

$$h^3 + 3h^2 - 10h - 30 = 0$$

$$h^{2}(h+3) - 10(h+3) = 0$$

$$(h^2 - 10)(h + 3) = 0$$

$$h = \sqrt{10}, -\sqrt{10}, -3$$

**since height (h) must be greater than 0, the only solution is
$$\sqrt{10}$$

To check:
$$(\sqrt{10} + 5)(\sqrt{10})(\sqrt{10} - 2) = (8.16)(3.16)(1.16) = 30$$

$$(8.16)(3.16)(1.16) = 30$$

Thanks for visiting. (Hope it helped!)

If you have questions, suggestions, or requests, let us know.

Enjoy...

Also, at Facebook, Google+, Pinterest, TES, and TeachersPayTeachers
Plus, Mathplane *Express* for mobile at mathplane.ORG