Algebra II
 Review Test 005
 (and, solutions!)

25 Questions include half-life, asymptotes, roots \& intercepts, absolute value, inequalities, sequences, linear systems, and more...

Algebra II Review Test 005

1) Solve:

$$
|3 x+7|=1
$$

$3|\mathrm{~d}|+4=16$

$$
2|y+4|+8=4
$$

2)

$$
y=\frac{x-18}{x+6} \quad \text { What is the } x \text {-intercept? }
$$

What is the y-intercept?
3) Graph the function $g(x)=\frac{\mathrm{x}^{2}+\mathrm{x}-2}{\mathrm{x}^{2}-\mathrm{x}-6}$

Identify the following:
Horizontal Asymptote:
Vertical Asymptote:
x-intercept:
y-intercept:
Removable discontinuity:
("holes")

4) Simplify:

$$
\frac{x^{2}+x y}{x y-y^{2}} \cdot \frac{x y^{2}-y^{3}}{x^{2}-y^{2}}
$$

5) $\$ 100,000$ is deposited in a bank that offers 5.2% annual interest compounded daily. How long will it take to accumulate $\$ 10,000$ in interest?
6) $\log 3=.477$
$\log 4=.602$
(Without a calculator) Find the following:
$\log 12=$
$\log .75=$
$\log 400=$
$\log 16=$
7)

$$
\left[\begin{array}{cc}
x & y \\
3 & -1
\end{array}\right]\left[\begin{array}{cc}
2 & 4 \\
1 & -5
\end{array}\right]=\left[\begin{array}{cc}
1 & 23 \\
5 & 17
\end{array}\right] \quad \begin{gathered}
x= \\
y=
\end{gathered}
$$

8) At the Ye Olde Snack Shop, raisins cost $\$ 3.40$ per pound and nuts cost $\$ 2.50$ per pound.

If a 50 -pound mixture of nuts and raisins costs $\$ 2.86$ per pound, how much of each are in the mixture?
9) $(5 \sqrt{3}+\sqrt{10})(5 \sqrt{3}-\sqrt{10})=$
10) Graph the function $h(x)=x^{2}-6$
where the domain is $\{0,1,2,3,4\}$

11) Simplify:

$$
7 \mathrm{a}^{-5} \mathrm{~b}^{6} \div 21 \mathrm{a}^{4} \mathrm{~b}^{-2} \quad\left(\frac{9}{49}\right)^{\frac{-3}{2}} \quad\left(2^{9}\right)^{\frac{1}{3}} \cdot \sqrt{32}
$$

12) What is the equation of a line perpendicular to $\mathrm{x}=3$ that goes through $(5,7)$?
13) $f(x)=x^{4}-2 x^{3}-7 x^{2}+8 x+12$

Find the zeros, identify the end behavior, and sketch the function:

14) $g(x)=4-\sqrt{3 x-6}$
a) $g(5)=$
b) $g(a+2)=$
c) $g(2-x)=$
15) In the quadratic $y=5 x-7 x^{2}+8$
what is a) the linear term?
b) the degree?
c) the constant?
16) Identify the center and radius of the circle:

$$
x^{2}+y^{2}-8 x+6 y=-16
$$

center:
radius:
17) Find the solution to the linear system

$$
\begin{aligned}
3 x+7 y+2 z & =2 \\
2 x-6 y & =22 \\
-x+4 y-4 z & =-15
\end{aligned}
$$

18) Solve:

$$
(x+2)^{2}=(x-4)^{2}
$$

$$
\frac{x+1}{x-1}=\frac{3 x}{3 x-6}
$$

19) 500 mg of a radioactive material has a half-life of 8 years.
a) How much material remains after 24 years?
b) How much material remains after 36 years?
c) When will less than 5 mg of the radioactive material remain?
20) Sequences:
a) What is the 5 th term in the following arithmetic sequence?

$$
A_{1}=2 \quad A_{2}=4 \quad A_{5}=
$$

b) What is the 5th term in the following geometric sequence?

$$
\mathrm{G}_{1}=2 \quad \mathrm{G}_{2}=4 \quad \mathrm{G}_{5}=
$$

21) Find the maximum value of $P=2 x+y$ subject to the constraints

$$
\begin{gathered}
x \geq 0 \\
y \geq 0 \\
x+y \leq 7 \\
5 x+2 y \leq 20
\end{gathered}
$$

Graph the constraints (and identify the feasibility region).

22) Factor: $x^{6}-1$
23) $f(x)=3 x+4$
a) $f(g(4))=$
b) $g(f(4))=$
c) $g^{-1}(\mathrm{x})=$
$g(x)=x^{2}-5$
24) $\frac{(x+3)(2-5 x)}{x+1} \leq 0 \quad$ Express the answer in interval notation. Then, graph on the number line.

25) Find X :
a) $9^{(\mathrm{X}+1)}=27^{2 \mathrm{X}}$
b) $\sqrt{5}=125^{3 \mathrm{X}}$

1) Solve:

$$
\begin{aligned}
& |3 x+7|=1 \\
& 3 x+7=-1 \\
& 3 x+7=1
\end{aligned} \begin{aligned}
& x=-8 / 3 \\
& 3 x=-2
\end{aligned}
$$

$$
\begin{gathered}
3|\mathrm{~d}|+4=16 \\
3|\mathrm{~d}|=12 \\
|\mathrm{~d}|=4 \\
\mathrm{~d}=4 \text { or }-4
\end{gathered}
$$

$2|y+4|+8=4$
$2|y+4|=-4$
$|y+4|=-2$
NO SOLUTIONS
absolute value cannot equal a negative
2)

$$
y=\frac{x-18}{x+6}
$$

What is the x -intercept? x -intercept is $(?, 0)$

$$
0=\frac{x-18}{x+6} \quad x=18
$$

$$
(18,0)
$$

What is the y-intercept? y-intercept is $(0, ?)$

$$
\mathrm{y}=\frac{0-18}{0+6} \quad \mathrm{y}=-3 \quad(0,-3)
$$

3) Graph the function

Identify the following:

$$
g(x)=\frac{x^{2}+x-2}{x^{2}-x-6}=\frac{(x+2)(x-1)}{(x+2)(x-3)}
$$

HA: degree of numerator equals degree of denominator lead coefficients are $1 . .1 / 1=1$ VA: at $x=3$, the function is 1/0 --- undefined.. (note: we exclude the $(x+2))$
x-intercept:
$g(\mathrm{x})$ equals 0 when x is 1
y-intercept:
$g(0)=-2 /-6 \quad 1 / 3$

Horizontal Asymptote: $\mathrm{y}=1$
Vertical Asymptote: $\mathrm{x}=3$
x -intercept: $(1,0)$
y -intercept: $\left(0, \frac{1}{3}\right)$
Removable discontinuity: $\left(-2, \frac{3}{5}\right)$
("holes")

$\begin{aligned} & \text { so, there is a hole at } x=-2 \\ & \text { excluding the }(x+2), g(-2) \text { would equal } \frac{(-2-1)}{(-2-3)}=3 / 5\end{aligned}$
$g(-2)=0 / 0$ so, there is a hole at $\mathrm{x}=-2$

$$
\begin{array}{lc}
\text { (factor) } & \frac{x(x+y)}{y(x-y)} \cdot \frac{y^{2}(x-y)}{(x+y)(x-y)} \\
\text { (cancel) } & \frac{x(x+y)}{y(x-y)} \cdot \frac{y^{2}\left(x-y y^{2}\right.}{y(x-y)} \quad \text { (reduce) } \\
(x+y)(x-y) & \frac{x y}{(x-y)} \\
\hline
\end{array}
$$

5) $\$ 100,000$ is deposited in a bank that offers 5.2% annual interest compounded daily. How long will it take to accumulate $\$ 10,000$ in interest?
$\mathrm{A}=\mathrm{P}\left(1+\frac{\mathrm{r}}{\mathrm{n}}\right)^{\mathrm{nt}}$
$\mathrm{A}=$ future amount
$\mathrm{P}=$ principal amount
$\mathrm{r}=$ interest rate
$\mathrm{n}=$ number of times the amount is compounded per year
$t=$ number of years

$$
\begin{aligned}
110,000 & =100,000\left(1+\frac{.052}{365}\right)^{\mathrm{t}} \\
1.1 & =\left(1+\frac{.052}{365}\right)^{\mathrm{t}}
\end{aligned}
$$

$$
\log 1.1=\log \left(1+\frac{.052}{365}\right)^{\mathrm{t}}
$$

$$
\log 1.1=\mathrm{t} \cdot \log \left(1+\frac{.052}{365}\right)
$$

$$
\begin{gathered}
.0414=t(.00006187) \\
t=669 \text { days } . .
\end{gathered}
$$

(approximately)
$t=\#$ of times compounded..
then,
since the bank compounds the money daily, the number of years is

$$
669 / 365=1.83 \text { years }
$$

6) $\log 3=.477$

SOLUTIONS
Algebra II Review Test 005
$\log 4=.602$
(Without a calculator) Find the following:

If a 50 -pound mixture of nuts and raisins costs $\$ 2.86$ per pound, how much of each are in the mixture?
let $\mathrm{R}=$ amount of raisins

$$
\begin{aligned}
\mathrm{R}+\mathrm{N} & =50 \quad \text { Quantity } \\
\$ 3.40 \mathrm{R}+\$ 2.50 \mathrm{~N} & =\$ 143 \quad \text { Cost }
\end{aligned}
$$

30 pounds of nuts 20 pounds of raisins

Since the mixture cost $\$ 2.86$ per pound,
Solve 2 equations, 2 unknowns:
50 pounds of mixture cost $50 \times 2.86=\$ 143$

$$
\begin{aligned}
& 3.40(50-\mathrm{N})+2.50 \mathrm{~N}=143 \\
& 170-3.4 \mathrm{~N}+2.5 \mathrm{~N}=143 \\
& -.9 \mathrm{~N}=-27 \quad \mathrm{~N}=30
\end{aligned}
$$

$$
\text { (and, } \mathrm{R}=20 \text {) }
$$

check answer:
$30 \times \$ 2.50=\$ 75$
$20 \times \$ 3.40=\$ 68$
and, $\$ 143$ (50 pounds)
is $\$ 2.86$ per lb

9) $(5 \sqrt{3}+\sqrt{10})(5 \lambda \sqrt{3}-\sqrt{10)}=$

$$
75-5 / \sqrt{30}+5 / \sqrt{30}-10
$$

FOIL

65

10) Graph the function $h(x)=x^{2}-6$

$$
\text { where the domain is }\{0,1,2,3,4\}
$$

the domain is just 5 points, and the range is the 5 corresponding values:
$h(0)=-6$
$h(1)=-5$
$h(2)=-2$
$h(3)=3$
$h(4)=10$
so, plot the 5 points to graph the function with the given domain...

$$
\begin{aligned}
& \log 12=\log (3 \cdot 4) \quad \log .75=\log \left(\frac{3}{4}\right) \\
& \log 3-\log 4= \\
& .477+.602=1.079 \\
& \text { note: } 10^{1.079} \cong 12 \\
& \text { 7) } \\
& {\left[\begin{array}{cc}
x & y \\
3 & -1
\end{array}\right]\left[\begin{array}{cc}
2 & 4 \\
1 & -5
\end{array}\right]=\left[\begin{array}{cc}
1 & 23 \\
5 & 17
\end{array}\right] \quad \begin{array}{l}
x=2 \\
y=-3
\end{array}} \\
& \log 400=\log (100 \cdot 4) \quad \log 16=\log 4^{2} \\
& \log 100+\log 4=\quad 2 \log 4= \\
& 2+.602=2.602 \quad 2 \cdot(.602)=1.204 \\
& \text { 8) At the Ye Olde Snack Shop, raisins cost } \$ 3.40 \text { per pound and nuts cost } \$ 2.50 \text { per pound. }
\end{aligned}
$$

11) Simplify :

SOLUTIONS

Algebra II Review Test 005

$7 a^{-5} b^{6} \div 21 a^{4} b^{-2}$
$\frac{7 a^{-5} b^{6}}{21 a^{4} b^{-2}}=\frac{7 b^{2} b^{6}}{21 a^{5} a^{4}}=\frac{1 b^{8}}{3 a^{9}}$

$$
\begin{aligned}
& \left(\frac{9}{49}\right)^{\frac{-3}{2}} \\
& \left(\frac{49}{9}\right)^{\frac{3}{2}}=\left(\frac{7}{3}\right)^{3} \\
& =\frac{343}{27}
\end{aligned}
$$

$$
\begin{aligned}
& \left(2^{9}\right)^{\frac{1}{3}} \cdot \sqrt{32} \\
& 2^{3} \cdot 4 \sqrt{2}=2^{3} \cdot 2^{2} \cdot 2^{\frac{1}{2}} \\
& \quad \begin{array}{|}
2^{\frac{11}{2}} \text { or } 32 \sqrt{2}
\end{array}
\end{aligned}
$$

12) What is the equation of a line perpendicular to $x=3$ that goes through (5, 7)?
since $x=3$ is vertical, any perpendicular line would be horizontal..
13) $f(x)=x^{4}-2 x^{3}-7 x^{2}+8 x+12$
a horizontal line through $(5,7)$
is

$$
\mathrm{y}=7
$$

Find the zeros, identify the end behavior, zeros: $-1,-2,2,3$ and sketch the function:
(rational root theorem) possible rational roots:

$$
\pm 1 \pm 2 \pm 3 \pm 4 \pm 6 \pm 12
$$

try $1:(1)^{4}-2(1)^{3}-7(1)^{2}+8(1)+12=12$
try -1: $(-1)^{4}-2(-1)^{3}-7(-1)^{2}+8(-1)+12=0$

$$
\begin{aligned}
& \left.-1 \begin{array}{rrrrr}
1 & -2 & -7 & 8 & 12 \\
& -1 & 3 & 4 & -12 \\
\hline & 1 & -3 & -4 & 12
\end{array}\right) \\
& x^{3}-3 x^{2}-4 x+12
\end{aligned}
$$

factor by grouping

$$
\begin{gathered}
x^{2}(x-3)-4(x-3) \\
\left(x^{2}-4\right)(x-3)
\end{gathered}
$$

$$
(x+2)(x-2)(x-3)
$$

$-2,2,3$ are zeros

end behavior: $\mathrm{x} \rightarrow+\infty \mathrm{f}(\mathrm{x})+\infty$
$\mathrm{x} \rightarrow-\infty \mathrm{f}(\mathrm{x})+\infty$
("up to the left and up to the right")
14) $g(x)=4-\sqrt{3 x-6}$
a) $g(5)=1$
b) $g(a+2)=4-\sqrt{3 a}$
c) $g(2-x)=4-\sqrt{-3 x}$
$4-\sqrt{3(5)-6}$
$4-\sqrt{3(a+2)-6}$
$4-\sqrt{3(2-x)-6}$
$4-3=1$
$4-\sqrt{3 a+6-6}$
$4-\sqrt{3 a}$
$4-\sqrt{6-3 x-6}$
$4-\sqrt{-3 x}$
15) In the quadratic $y=5 x-7 x^{2}+8$
what is a) the linear term? 5 x
b) the degree? the lead degree is 2
c) the constant? 8
16) Identify the center and radius of the circle:

$$
x^{2}+y^{2}-8 x+6 y=-16 \quad x^{2}-8 x \quad+y^{2}+6 y \quad=-16
$$

(complete the square to put into standard form)
center: $(4,-3)$
$x^{2}-8 x+16+y^{2}+6 y+9=-16+16+9$
radius: 3

$$
\begin{array}{ccc}
(x-4)(x-4)+(y+3)(y+3)=9 & h=4 & k=-3 \\
(x-4)^{2}+(y+3)^{2}=9 & r=3 &
\end{array}
$$

17) Find the solution to the linear system

use matrix/calculator

$$
\begin{aligned}
3 x+7 y+2 z & =2 \\
2 x-6 y & =22 \\
-x+4 y-4 z & =-15
\end{aligned}
$$

$\left[\begin{array}{ccc|c}3 & 7 & 2 & 2 \\ 2 & -6 & 0 & 22 \\ -1 & 4 & -4 & -15\end{array}\right]$ or $\left[\begin{array}{rcc}3 & 7 & 2 \\ 2 & -6 & 0 \\ -1 & 4 & -4\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}2 \\ 22 \\ -15\end{array}\right]$
use elimination/substitution

18) Solve:

$$
\begin{aligned}
(x+2)^{2} & =(x-4)^{2} \\
x^{2}+4 x+4 & =x^{2}-8 x+16 \\
12 x & =12 \\
x & =1
\end{aligned}
$$

$$
\begin{aligned}
& (x+1)(3 x-6)=3 x(x-1) \\
& 3 x^{2}-3 x+6=3 x^{2}-3 x
\end{aligned}
$$

$$
\frac{x+1}{x-1}=\frac{3 x}{3 x-6} \quad \text { (cross multiply) }
$$

$$
\begin{gathered}
13(5)+7(-2)+2 z=2 \\
2 z=1 \\
z=1 / 2
\end{gathered}
$$

$$
-3 x+6=-3 x
$$

NO SOLUTIONS

$$
6=0
$$

19) 500 mg of a radioactive material has a half-life of 8 years.
a) How much material remains after 24 years? 62.5 (see chart)
b) How much material remains after 36 years?
c) When will less than 5 mg of the radioactive material remain?

Need to find rate of decay:

$$
\begin{aligned}
250 & =500 e^{\mathrm{r}(8)} \\
\frac{1}{2} & =e^{8 \mathrm{r}}
\end{aligned}
$$

b) $\mathrm{A}=500 e^{-.087(36)}$
$=500(.0436)=21.82$

t (years)	size (mg)
0	500
8	250
16	125
24	62.5
32	31.25
36	$?$
40	15.625
48	7.8125
$?$	5

$\ln \frac{1}{2}=\ln e^{8 \mathrm{r}}$
c) $5=500 e^{-.087(\mathrm{t})}$

$$
.01=e^{-.087(\mathrm{t})} \quad-4.6=-.087 \mathrm{t}
$$

$t>52.933$ years

$$
-.693=8 \mathrm{r}
$$

$\ln .01=-.087(\mathrm{t}) \ln e$

$$
\mathrm{t}=52.933
$$

20) Sequences:
sequence?
"common difference" $=2 \quad 2,4,6,8,10, \ldots \quad A_{1}=2 \quad \mathrm{~A}_{2}=4 \quad \mathrm{~A}_{5}=10$
b) What is the 5 th term in the following geometric sequence?

$$
\text { "common ratio" }=4 / 2=2 \quad 2,4,8,16,32, \ldots \quad \mathrm{G}_{1}=2 \quad \mathrm{G}_{2}=4 \quad \mid \mathrm{G}_{5}=32
$$

21) Find the maximum value of $P=2 x+y$ subject to the constraints

$$
\begin{gathered}
x \geq 0 \\
y \geq 0 \\
x+y \leq 7 \\
5 x+2 y \leq 20
\end{gathered}
$$

Gray area is the feasibility region...
And, the vertices represent possible maximum values..

SOLUTIONS
test vertices: $\quad(0,0): \mathrm{P}=2(0)+(0)=0$

$$
\begin{aligned}
& (0,7): \mathrm{P}=2(0)+(7)=7 \\
& (2,5): \mathrm{P}=2(2)+(5)=9 \\
& (4,0): \mathrm{P}=2(4)+(0)=8
\end{aligned}
$$

The maximum value is 9 ...

Graph the constraints (and identify the feasibility region).

22) Factor: $x^{6}-1$
$5 x+2 y=20 \quad x+y=7$
difference of squares $\left(x^{3}+1\right)\left(x^{3}-1\right)$
sum/difference of cubes

$$
(x+1)\left(x^{2}-x+1\right)(x-1)\left(x^{2}+x+1\right)
$$

23) $f(x)=3 x+4$

$$
g(x)=x^{2}-5
$$

a) $f(g(4))=$
b) $g(f(4))=$
$g(4)=(4)^{2}-5=11$
$f(11)=3(11)+4=37$
$f(4)=3(4)+4=16$
$g(16)=(16)^{2}-5=251$
c) $g^{-1}(x)=\quad \begin{aligned} & \text { to find the inverse } \\ & \text { of } g(x),\end{aligned}$
$y=x^{2}-5 \quad$ switch x / y
$x=y^{2}-5 \quad$ solve for y
$y^{2}=x+5$
$y=\sqrt{x+5}$
24) $\frac{(x+3)(2-5 x)}{x+1} \leq 0$

Find critical values:

$$
\begin{array}{ll}
(x+3)=0 & x=-3 \\
(2+5 x)=0 & x=2 / 5 \\
(x+1) \neq 0 & x \neq-1
\end{array}
$$

Express the answer in interval notation. Then, graph on the number line.

then, test regions:

$$
\begin{array}{lll}
\mathrm{x}=-4 & >0 & \text { no } \\
\mathrm{x}=-2 & <0 & \text { yes } \\
\mathrm{x}=0 & >0 & \text { no } \\
\mathrm{x}=2 & <0 & \text { yes }
\end{array}
$$

25) Find X :
a) $9^{(\mathrm{X}+1)}=27^{2 \mathrm{X}}$
$\left(3^{2}\right)^{(\mathrm{X}+1)}=\left(3^{3}\right)^{2 \mathrm{X}}$
$X=\frac{1}{2}$

$$
\begin{aligned}
3^{2 X+2} & =3^{6 X} \\
2 X+2 & =6 X
\end{aligned}
$$

b) $\sqrt{5}=125^{3 \mathrm{X}} \quad 5^{\frac{1}{2}}=\left(5^{3}\right)^{3 \mathrm{X}}$

$$
\frac{1}{2}=9 \mathrm{X} \quad \mathrm{X}=\frac{1}{18}
$$

Thanks for checking out this review test. (Hope it helped!)

If you have any questions, suggestions, or feedback, let me know.

Cheers,
Lance..

