Vectors 2

Examples and Practice Questions (with solutions)

Topics include bearings, force, unit vectors, orthogonal vectors, graphing, angle vector theorem, and more.

Example: Given the graph of vectors u and v :

Find a) $u+v$
b) $u-v \quad$ Show answer graphically
c) $\mathrm{v}-\mathrm{u}$ and using the components..

Example: 3 forces act at the top of a pole.. The magnitude of $F 1$ is 250 lbs and the magnitude of F 2 is 300 lbs

If the resultant vector of the 3 forces is directly vertically downward,

what is the magnitude of F3?
$x=r \cos \ominus$
$y=r \sin \ominus$
since it's a 45 degree angle, x and y will be the same...
Let's search for r , using the x values...
$\mathrm{F} 1+\mathrm{F} 2+\mathrm{F} 3$ must result in $\mathrm{x}=0$
F1 $x=r \cos \ominus \quad x=250 \cos (200) \quad x=-234.9$
F2 $x=r \cos \ominus \quad x=300 \cos (215) \quad x=-245.7$
F3 $x=r \cos \ominus \quad x=r \cos (-45)$

$$
\left.\begin{array}{rl}
250 \cos (200)+300 \cos (215) & +\mathrm{r} \cos (-45)=\mathrm{r} \cos (270) \\
-234.9 & -245.7
\end{array}+\mathrm{r} \cos (-45)=\mathrm{r}(0) \mathrm{r}\right)
$$

(quadrant 2 is negative)

NOTE: we apply the forces in the diagram to a coordinate plane

Finding the angle between 2 vectors in a plane

Example: Given vector $\mathrm{u}=<3,9>$ and vector v has a magnitude of 8 and direction 60 degrees.
Find the angle between u and v.
Method 1: Find angle of vector u and compare to vector v

$$
\text { vector } u=\langle 3,9\rangle
$$

The angle between the vectors is
$71.56^{\circ}-60^{\circ}=11.56^{\circ}$

$$
\begin{aligned}
& \tan (\ominus)=\frac{9}{3}=3 \\
& \tan ^{-1}(3)=71.56^{\circ}
\end{aligned}
$$

Method 2: Use angle formula

$$
\cos \ominus=\frac{\mathrm{u} \cdot \mathrm{v}}{\|\mathrm{u}\|\|\mathrm{v}\|}
$$

where \ominus is the angle between vectors u and v

$$
\begin{aligned}
& \mathrm{u}=\langle 3,9\rangle \\
& \|\mathrm{u}\|=\sqrt{3^{2}+9^{2}}=3 \sqrt{10}
\end{aligned}
$$

Since $\|\mathrm{v}\|=8$
and, the degree measure is 60 ,
vector $\mathrm{v}=\langle 4,4 \sqrt{3}\rangle$

$$
\begin{array}{r}
\cos \ominus=\frac{\mathrm{u} \cdot \mathrm{v}}{\|\mathrm{u}\|\|\mathrm{v}\|}=\frac{3 \cdot 4+9 \cdot 4 \sqrt{3}}{3 \sqrt{10} \cdot 8}=\frac{74.35}{75.89} \\
\ominus=\cos ^{-1} \frac{74.35}{75.89}=11.56
\end{array}
$$

Deriving the Angle Vector equation:

$$
\begin{aligned}
\cos \ominus & =\frac{\mathrm{U} \cdot \mathrm{~V}}{|\mathrm{U}||\mathrm{V}|} \\
& \text { or } \frac{\mathrm{U} \cdot \mathrm{~V}}{\|\mathrm{U}\|\|\mathrm{V}\|}
\end{aligned}
$$

$$
\text { Law of Cosines: } \quad c^{2}=a^{2}+b^{2}-2 a b(\cos \ominus)
$$

$$
\mathrm{V}-\mathrm{u}
$$

Vector Dot Product \& Length Property

$$
\|\overrightarrow{\mathrm{w}}\|^{2}=\overrightarrow{\mathrm{w}} \cdot \overrightarrow{\mathrm{w}}
$$

$$
\begin{aligned}
\|\mathrm{V}-\mathrm{U}\|^{2} & =\|\mathrm{U}\|^{2}+\|\mathrm{V}\|^{2}-2\|\mathrm{U}\| \cdot\|\mathrm{V}\|(\cos \ominus) \\
(\mathrm{V}-\mathrm{U}) \cdot(\mathrm{V}-\mathrm{U}) & =\|\mathrm{U}\|^{2}+\|\mathrm{V}\|^{2}-2\|\mathrm{U}\| \cdot\|\mathrm{V}\|(\cos \ominus) \\
\mathrm{V} \cdot \mathrm{~V}-\mathrm{U} \cdot \mathrm{~V}-\mathrm{V} \cdot \mathrm{U}+\mathrm{U} \cdot \mathrm{U} & =\|\mathrm{U}\|^{2}+\|\mathrm{V}\|^{2}-2\|\mathrm{U}\| \cdot\|\mathrm{V}\|(\cos \ominus) \\
\|\mathrm{V}\|^{2}-2 \mathrm{U} \cdot \mathrm{~V}+\| \mathrm{U}^{2} & =\|\mathrm{U}\|^{2}+\|\mathrm{V}\|^{2}-2\|\mathrm{U}\| \cdot\|\mathrm{V}\|(\cos \ominus) \\
-2 \mathrm{U} \cdot \mathrm{~V} & =-2\|\mathrm{U}\| \cdot\|\mathrm{V}\|(\cos \ominus) \\
\frac{\mathrm{U} \cdot \mathrm{~V}}{\|\mathrm{U}\| \cdot\|\mathrm{V}\|} & =(\cos \ominus)
\end{aligned}
$$

Example: A plane flying at 860 km per hour at a bearing of 148° has a ground speed of 800 km per hour and a bearing of 140°. What is the wind direction and force?

Method 1: Using Law of Cosines/Sines
Step 1: Draw a diagram

Step 2: Use law of cosines to find wind force (speed)

$$
\begin{aligned}
& \mathrm{w}^{2}=800^{2}+860^{2}-2(800)(860) \cos \left(8^{\circ}\right) \\
& \mathrm{w}^{2}=1379600-1376000(.990) \\
& \mathrm{w}^{2}=16991
\end{aligned}
$$

$$
\mathrm{W}=130.35
$$

Step 3: Use law of sines to get angles (to find bearing)

$$
\frac{\sin (8)}{130.35}=\frac{\sin (x)}{800} \quad \sin (x)=\frac{800 \sin (8)}{130.35}=.854 \quad x=58.6^{\circ}
$$

Then, $58.6+8+\mathrm{y}=180$ so, the other angle is 113.4°

Using geo and theor angle is 63
Therefore

Step 1: Change bearings into standard angle measures
140 degrees $--->-50$ degrees (or 310 degrees)
148 degrees $-\cdots--\gg 8$ degrees (or 302 degrees)

Step 2: Find the component vectors

Step 3: Solve Air speed + Wind Speed $=$ Ground Speed

$$
\begin{aligned}
\langle 455.7,-729.3\rangle+\langle\mathrm{i}, \mathrm{j}\rangle & =\langle 514.2,-612.8\rangle \\
\text { Wind speed } & =\langle 58.5,116.5\rangle
\end{aligned}
$$

$$
\begin{aligned}
& <\mathrm{r} \cos \ominus, \mathrm{r} \sin \ominus> \\
& \text { Ground speed: }<800 \cos 310,800 \sin 310\rangle \\
& <514.2,-612.8> \\
& \text { Air speed: } \\
& <860 \cos 302,860 \sin 302> \\
& <455.7,-729.3\rangle
\end{aligned}
$$

The first force pulls at 150 lbs at a 20 degree angle (relative to the x -axis)
The second force pulls at 200 lbs at a -30 degree angle (relative to the x -axis) What is the total force and which direction is the object pulled?

Method 1: Using Law of cosines and Law of Sines

Property of parallelogram: consecutive angles are supplementary...

$$
\left(50^{\circ}+130^{\circ}=180^{\circ}\right)
$$

To find force, use law of cosines..

$$
\begin{aligned}
& \mathrm{a}^{2}=200^{2}+150^{2}-2(200)(150) \cos \left(130^{\circ}\right) \\
& \mathrm{a}^{2}=62500-60000(-.643) \\
& \mathrm{a}^{2}=101,067 \\
& \mathrm{a}=317.9 \mathrm{lbs}
\end{aligned}
$$

To find direction, we can use law of sines...

$$
\begin{aligned}
& \frac{\sin (130)}{317.9}=\frac{\sin B}{150} \\
& \sin B=\frac{150 \sin (130)}{317.9}=.361 \\
& B=21.2 \text { degrees } \quad \text { Since } D+B=-30 \\
& \text { direction } D=-8.8^{\circ}
\end{aligned}
$$

Method 2: Use Component Vectors

$$
\begin{array}{cc}
<\mathrm{r} \cos \ominus, \mathrm{r} \sin \ominus> \\
<150 \cos (20), 150 \sin (20)> & <200 \cos (-30), 200 \sin (-30)> \\
<140.9,51.3> & <173.2,-100>
\end{array}
$$

Add components to get resultant vector:

$$
\begin{aligned}
& \langle 140.9+173.2,51.3+(-100)\rangle=\langle 314.1,-48.7\rangle \\
& \quad \text { magnitude of vector: } \sqrt{314.1^{2}+(-48.7)^{2}}=317.9
\end{aligned}
$$

$$
\text { direction of vector: } \quad \tan ^{-1}\left(\frac{-48.7}{314.1}\right)=-8.8^{\circ}
$$

The sum of 2 vectors is $\langle 3,7\rangle$.
If one vector is parallel to $\langle 4,1\rangle$
and
one vector is perpendicular to $\langle 4,1\rangle$,
what are the 2 vectors?
If a vector is parallel to $\langle 4,1\rangle$, it will have the same ratio (i.e. slope)...
If a vector is perpendicular to $\langle 4,1\rangle$, it will have the opposite reciprocal...

$$
\langle-25 / 17,100 / 17\rangle \text { is perpendicular to }\langle 4,1\rangle
$$ (the dot product is 0)

Example: My dog Norway is tugging on two ropes held by me and my friend.
If I'm pulling on a rope with a force of 23 at an angle of 19 degrees, and my friend is pulling on the other rope with a force of 18 at an angle of 16 degrees,
what is the force my dog is pulling?
Step 1: Draw a diagram
Step 2: Convert the angles and force into vectors

$$
\begin{array}{cc}
x=r \cos \ominus & <23 \cos (19), 23 \sin (19)> \\
y=r \sin \ominus & <21.75,7.49> \\
& <18 \cos (-16), 18 \sin (-16)> \\
& <17.30,-4.96>
\end{array}
$$

Step 3: Find the resultant vector

$$
\langle 21.75,7.49\rangle+\langle 17.30,-4.96\rangle=\langle 39.05,2.53\rangle
$$

The resultant vector of me and my friend combined...

Step 4: Find the force of the dog

Since the vector of me and my friend is $\langle 39.05,2.53\rangle$,
the force ('magnitude') is $\sqrt{39.05^{2}+2.53^{2}}=39.13$
therefore, the force of Norway the dog is $39.13 \ldots$

$$
<0,-39.13\rangle \text { is the vector }
$$

$\cos \ominus=\frac{\mathrm{a} \cdot \mathrm{b}}{\|\mathrm{a}\|\|\mathrm{b}\|} \quad$| Dot Product | >0 ACUTE |
| ---: | :--- |
| where Θ is the angle between
 vectors a and b. | <0 OBTUSE |
| | $=0$ RIGHT (Orthogonal Vectors) |

Example: $\mathrm{v}=\langle 5,12\rangle$

$$
\mathrm{u}=\langle-3,4\rangle
$$

Find the angle between vectors u and v,
a) using the vector formula
b) using geometry and trigonometry

Using the formula,

$$
\begin{aligned}
\cos \ominus & =\frac{\mathrm{u} \cdot \mathrm{v}}{\|\mathrm{u}\|\|\mathrm{v}\|} \\
\cos \ominus & =\frac{33}{(5)(13)}
\end{aligned}
$$

59.5 degrees

Using geometry and trigonometry,

$$
\begin{array}{rlrl}
\tan \mathrm{A} & =\frac{4}{3} & \tan \mathrm{~B} & =\frac{12}{5} \\
\mathrm{~A} & =53.1 & \mathrm{~B} & =67.4
\end{array}
$$

$A+B+$ Angle $=180$
$53.1+67.4+$ Angle $=180$
Angle $=59.5$

Example: Find the angle between $\langle 3,-1\rangle$ and $\langle-3,1\rangle$

$$
\begin{aligned}
\cos \ominus & =\frac{-10}{10}=-1 \\
\ominus & =180 \text { degrees }
\end{aligned}
$$

Example. $|\mathrm{u}|=8 \quad$ "Bearing direction" 115 degrees
$|\mathrm{v}|=10 \quad$ "Bearing direction" 50 degrees

Draw the vectors. Then find $|u+v|$, using a) component vectors
b) law of cosines and geometry
a) using component vectors

$$
\begin{array}{rlll}
\mathrm{u}: \mathrm{x}=8 \cos \left(-25^{\circ}\right) & 7.25 & <7.25,-3.4> & \\
\mathrm{y}=8 \sin \left(-25^{\circ}\right) & -3.4 & & \mathrm{u}+\mathrm{v}=<14.91,3\rangle \\
\mathrm{v}: \mathrm{x}=10 \cos \left(40^{\circ}\right) & 7.66 & <7.66,6.4> & |\mathrm{u}+\mathrm{v}|=15.2 \\
\mathrm{y}=10 \sin \left(40^{\circ}\right) & 6.4 &
\end{array}
$$

b) using law of cosines and geometry $c^{2}=8^{2}+10^{2}-2(8)(10) \cos (115)$

$$
c^{2}=164-160 \cos (115)
$$

$$
c^{2}=164--67.6
$$

$$
\mathrm{c}=15.2
$$

Example: Find the projection of vector $\mathrm{u}\langle 3,-1\rangle$ onto vector $\mathrm{v}\langle 6,10\rangle$

$$
\begin{aligned}
& \text { The projection formula: } \\
& \text { The projection of vector } u \text { onto vector } v \text { is } \\
& \operatorname{proj}_{v} u=\frac{u \cdot v}{|v|^{2}} \vec{v}
\end{aligned}
$$

. $\mathrm{v}=18-10=8$
$|\mathrm{v}|=\sqrt{3^{2}+11^{2}}=\sqrt{130}$
The sun shines on
$|\mathrm{v}|^{2}=130$

$$
\begin{aligned}
\operatorname{proj}_{\mathrm{v}} \mathrm{u}=\frac{8}{130}<6,10>\leadsto & <.37, .61> \\
& <\frac{24}{65}, \frac{8}{13}>
\end{aligned}
$$

$(3,-1)$
vector u and creates a shadown on vector v shadown on vector

Red projected vector $\langle .37, .61\rangle$ has the same direction as $<6,10\rangle$
$\langle .37, .61\rangle+$ perpendicular vector $=\langle 3,-1\rangle$
perpendicular vector $=\langle 2.63,-1.61\rangle$
$<.37, .61>\cdot<2.63,-1.61>=0$
dot product is 0 , so perpendicular

Projection of u onto $v . .$.

$\operatorname{proj}_{\mathrm{v}}^{\mathrm{u}}$	$=\frac{\mathrm{u} \cdot \mathrm{v}}{\|\mathrm{v}\|^{2}} \stackrel{\rightharpoonup}{\mathrm{v}}$
	$=\frac{\mathrm{u} \cdot \mathrm{v}}{\|\mathrm{v}\|} \frac{\frac{\rightharpoonup}{\mathrm{v}}}{\|\mathrm{v}\|}$
(unit vector)	

Example: Vectors $\overrightarrow{\mathrm{U}}=\langle-2,8\rangle$ and $\overrightarrow{\mathrm{W}}=\langle 4,3\rangle$
Find the projetion of U onto W.
Then, identify the component vectors, where the resultant is U

$$
\begin{aligned}
& \operatorname{Proj}_{W} \mathrm{U}=\frac{\mathrm{U} \cdot \mathrm{~W}}{\|\mathrm{~W}\|} \mathrm{W} \\
&=\frac{16}{25}\langle 4,3\rangle=\left\langle\frac{64}{25}, \frac{48}{25}\right\rangle \\
& \mathrm{P}_{1}+\mathrm{P}_{2}=\mathrm{U} \\
&\left\langle\frac{64}{25}, \frac{48}{25}\right\rangle+\mathrm{P}_{2}=\langle-2,8\rangle
\end{aligned}
$$

$P_{2}=\left\langle\frac{-114}{25}, \frac{152}{25}\right\rangle$

$$
P_{1} \cdot P_{2}=\left\langle\frac{64}{25}, \frac{48}{25}\right\rangle \cdot\left\langle\frac{-114}{25}, \frac{152}{25}\right\rangle=-7296 / 625+7296 / 625=0
$$

the components are perpendicular...

Example: The angle between 2 vectors is 45 degrees...
If one vector is $\langle 3,4\rangle$ and the other vector is $\langle 2, k\rangle$,
then what is k ?

$$
\cos \left(45^{\circ}\right)=\frac{\langle 3,4\rangle \cdot\langle 2, \mathrm{k}\rangle}{\sqrt{25} \sqrt{\left(\mathrm{k}^{2}+4\right)}} \leadsto \frac{\sqrt{2}}{2}=\frac{4 \mathrm{k}+6}{5 \sqrt{\left(\mathrm{k}^{2}+4\right)}}
$$

angle between vectors:

$$
\cos \theta=\frac{\mathrm{u} \cdot \mathrm{v}}{|\mathrm{u}||\mathrm{v}|}
$$

$$
5 \sqrt{2 \mathrm{k}^{2}+8}=8 \mathrm{k}+12
$$

$$
\begin{gathered}
50 \mathrm{k}^{2}+200=64 \mathrm{k}^{2}+192 \mathrm{k}+144 \\
14 \mathrm{k}^{2}+192 \mathrm{k}+56=0 \\
7 \mathrm{k}^{2}+96 \mathrm{k}-28=0 \\
(7 \mathrm{k}-2)(\mathrm{k}+14)=0 \\
\mathrm{k}=2 / 7 \text { or }-1 / 4
\end{gathered}
$$

angle of $\langle 3,4\rangle$

$$
\tan ^{-1}(4 / 3)=53.13^{\circ}
$$

$$
\text { angle of }\langle 2,2 / 7\rangle
$$

$$
45 \text { degree }
$$ difference

$$
\tan ^{-1}\left(\frac{2 / 7}{2}\right)=8.13^{\circ}
$$

Practice Test- \rightarrow

1) Find the unit vector of $\overrightarrow{\mathrm{v}}=2 i-5 j$
2) For the given vector $\overrightarrow{\mathrm{u}}=\langle-4,9\rangle$
a) What is the length of the vector?
b) Find the unit vector of $\overrightarrow{\mathrm{u}}$
c) Determine a vector in the same direction with length $5 \ldots$
d) Graph the vectors...

3) For the given vectors $\mathrm{v}=\langle 3,-4\rangle \mathrm{w}=\langle 1, \mathrm{~K}\rangle$
a) If v and w are parallel, what is K ?
b) If v and w are orthogonal (or perpendicular), what is K ?
4) Find the vector with the given magnitude and direction:
$\|\mathrm{v}\|=8$ in the direction $(5,6)$
5) Given the following magnitudes:

$$
\begin{gathered}
\left\|\mathrm{F}_{1}\right\|=72 \quad\left\|\mathrm{~F}_{2}\right\|=38 \\
\left\|\mathrm{~F}_{1}+\mathrm{F}_{2}\right\|=93
\end{gathered}
$$

what is the angle between the vectors?
6) Given the vectors in component form

$$
\mathrm{u}=\langle-4,-4\rangle \mathrm{v}=\langle 4,2\rangle
$$

Find a) $u+v$
b) $u+3 v$
c) $u-2 v$

Answer both graphically and using the components...
a)

b)

c)

7) A plane flying N52W at an air speed of 340 miles per hour has a ground speed of 325 miles per hour going N47W.

What is the bearing and speed of the wind?
AIR SPEED + WIND SPEED = GROUND SPEED
8) $\mathrm{u}=\langle-3,2\rangle \mathrm{v}=\langle 4,8\rangle$
find $(u \cdot v) v$
9) Graph the vectors and find the angle between them...
$\mathrm{u}=2 i+4 j$
$\mathrm{v}=-3 i+5 j$

10) Two cranes lift an object. The diagram shows the known angles and weight.

Find the force of each crane:

11) Find the magnitude and direction of the resultant vector
of vectors A and B.

12) Given the following forces: Force 1: 55 lbs Force 2: 80 lbs The resultant force: 125 lbs

Find the angle between the forces...

> A long time ago,
> in a classroom
> far, far away...

Solutions - \rightarrow

1) Find the unit vector of $\overrightarrow{\mathrm{v}}=2 i-5 j$

$$
\text { unit vector } \hat{\mathrm{v}}=\frac{\mathrm{v}}{\|\mathrm{v}\|}
$$

$$
\|\mathrm{v}\|=\sqrt{2^{2}+(-5)^{2}}=\sqrt{29}
$$

2) For the given vector $\overrightarrow{\mathrm{u}}=\langle-4,9\rangle$
a) What is the length of the vector?

$$
\|\mathrm{v}\|=\sqrt{(-4)^{2}+(9)^{2}}=\sqrt{97}
$$

b) Find the unit vector of $\overrightarrow{\mathrm{u}}$

$$
\text { unit vector }=\frac{\mathrm{u}}{\|\mathrm{u}\|}
$$

unit vector $\overrightarrow{\mathrm{u}}$

$$
\hat{\mathrm{u}}=<\frac{-4}{\sqrt{97}}, \frac{9}{\sqrt{97}}>
$$

c) Determine a vector in the same direction with length $5 \ldots$

Since unit vector has length 1 , a vector in the same direction with length 5:

$$
<\frac{-20}{\sqrt{97}}, \frac{45}{\sqrt{97}}>
$$

d) Graph the vectors...

3) For the given vectors $\mathrm{v}=\langle 3,-4\rangle \mathrm{w}=\langle 1, \mathrm{~K}\rangle$
a) If v and w are parallel, what is K ?

If the vectors are parallel, they are going in the same direction.. direction (slope) of $\mathrm{v}=\frac{-4}{3} \quad$ direction of $\mathrm{w}=\frac{\mathrm{K}}{1} \quad \mathrm{~K}=-4 / 3$ therefore, there 'slopes' are the same...
b) If v and w are orthogonal (or perpendicular), what is K ?

If the vectors are orthogonal, then the dot product equals $0 . \quad \mathrm{v} \cdot \mathrm{w}=(3)(1)+(-4)(\mathrm{K})=0$

$$
3-4 \mathrm{~K}=0 \quad \mathrm{~K}=3 / 4
$$

4) Find the vector with the given magnitude and direction:

$$
\|\mathrm{v}\|=8 \text { in the direction }(5,6)
$$

first, find the unit vector in the direction $(5,6):<\frac{5}{\sqrt{61}}, \frac{6}{\sqrt{61}}>\quad$ (magnitude $=1$)
then, adjust it to the correct magnitude:

$$
8<\frac{5}{\sqrt{61}}, \frac{6}{\sqrt{61}}>=<\frac{40}{\sqrt{61}}, \frac{48}{\sqrt{61}}>\quad \text { or } \quad \frac{40}{\sqrt{61}} i+\frac{48}{\sqrt{61}} j
$$

5) Given the following magnitudes:

$$
\begin{gathered}
\left\|\mathrm{F}_{1}\right\|=72 \quad\left\|\mathrm{~F}_{2}\right\|=38 \\
\left\|\mathrm{~F}_{1}+\mathrm{F}_{2}\right\|=93
\end{gathered}
$$

what is the angle between the vectors?

Use law of cosines...

$$
\begin{aligned}
& 93^{2}=72^{2}+38^{2}-2(72)(38) \cos \ominus \\
& 8649=5184+1444-5472 \cos \ominus \\
& 2021=-5472 \cos \ominus \quad \ominus=111.7^{\circ}
\end{aligned}
$$

$$
-.369=\cos \theta
$$

$$
\mathrm{u}=\langle-4,-4\rangle \mathrm{v}=\langle 4,2\rangle
$$

Find a) $\mathrm{u}+\mathrm{v} \quad\langle-4,-4\rangle+\langle 4,2\rangle=\langle 0,-2\rangle$
b) $\mathrm{u}+3 \mathrm{v} \quad\langle-4,-4\rangle+\langle 12,6\rangle=\langle 8,2\rangle$
c) $\mathrm{u}-2 \mathrm{v} \quad\langle-4,-4\rangle-<8,4\rangle=\langle-12,-8\rangle$

Answer both graphically and using the components...
a)

b)

c)

7) A plane flying N52W at an air speed of 340 miles per hour has a ground speed of 325 miles per hour going N47W.

What is the bearing and speed of the wind?
AIR SPEED + WIND SPEED = GROUND SPEED
Step 1: Draw a diagram
Step 2: Determine the component vectors

$$
\begin{array}{cl}
<\mathrm{r} \cos \ominus, \mathrm{r} \sin \ominus> & \\
<340 \cos \left(142^{\circ}\right), 340 \sin \left(142^{\circ}\right)> & \begin{array}{l}
\text { NOTE: we changed the } \\
\text { orientation from navigation } \\
\text { bearings to geometry plane }
\end{array} \\
<-267.9,209.3> & \text { EX: N52W becomes } 142^{\circ} \\
<325 \cos \left(137^{\circ}\right), 325 \sin \left(137^{\circ}\right)> & \\
<-237.7,221.6> &
\end{array}
$$

Step 3: Find resultant vector and magnitude...

Air speed + Wind speed $=$ Ground Speed

$$
\left.\left.<-267.9,209.3\rangle+<\mathrm{W}_{\mathrm{i}}, \mathrm{~W}_{\mathrm{j}}\right\rangle=<-237.7,221.6\right\rangle
$$

Wind vector $=\langle 30.2,12.3\rangle$

$$
\|\mathrm{W}\|=\sqrt{30.2^{2}+12.3^{2}}=32.6 \mathrm{mph}
$$

$$
\begin{aligned}
\tan ^{-1} \frac{12.3}{30.2} & =\ominus & \begin{array}{l}
\text { since the angle is } 22.16, \text { the } \\
\text { bearing is }
\end{array} \\
& =22.16^{\circ} & 90-22.16 \cdots->N 67.84 \mathrm{E}
\end{aligned}
$$

8)

$\mathrm{u}=\langle-3,2\rangle \mathrm{v}=\langle 4,8\rangle$
find $(u \cdot v) v$
(order of operations -- parenthesis first)

$$
u \cdot v=(-3 \times 4)+(2 \times 8)=4
$$

$$
4 \mathrm{v}=\langle 16,32\rangle
$$

9) Graph the vectors and find the angle between them...
$\mathrm{u}=2 i+4 j$
$\mathrm{v}=-3 i+5 j$

$$
\begin{aligned}
\cos \ominus & =\frac{\mathrm{u} \cdot \mathrm{v}}{|\mathrm{u}||\mathrm{v}|}=\frac{(2 \times(-3))+(4 \times 5)}{\sqrt{20} \times \sqrt{34}}=\frac{14}{26.08} \\
\ominus & =\cos ^{-1}\left(\frac{14}{26.08}\right)=57.5 \text { degrees }
\end{aligned}
$$

Alternate method:

$$
\begin{aligned}
& \mathrm{u}=\langle 2,4\rangle \tan ^{-1}\left(\frac{4}{2}\right)=63.4 \text { degrees } \\
& \mathrm{v}=\langle-3,5\rangle \tan ^{-1}\left(\frac{5}{-3}\right)=-59.0+180=121-63.4=57.6
\end{aligned}
$$

10) Two cranes lift an object. The diagram shows the known angles and weight.

Using component vectors:

Using trigonometry, geometry, and law of sines:

Note: consecutive angles of parallelogram must be supplementary...

$\frac{\sin (65.7)}{c_{2}}=\frac{\sin (68.8)}{20,240}$	
$\frac{\sin (45.5)}{c_{1}}=\frac{\sin (68.8)}{20,240}$	crane $2=19,785$

11) Find the magnitude and direction of the resultant vector
of vectors A and B.

Method 1: Convert to component vectors
28 degrees and magnitude $500 \sim<500 \cos (28), 500 \sin (28)><441.47,234.74>$

75 degrees and magnifude $700<700 \cos (75), 700 \sin (75)><181.17,676.15>$
add the vectors.....

$$
<622.65,910.89>
$$

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{910.89}{622.65}\right)=55.64^{\circ} \\
& \text { magnitude: } \sqrt{622.65^{2}+910.89^{2}}=1103.36 \text { (approximately) }
\end{aligned}
$$

Method 2: Using law of sines and cosines and parallelogram

Consecutive angles of a parallelogram are supplementary...
Using law of cosines where sides are 500 and 700, and the included angle is 133 degrees
magnitude ${ }^{2}=500^{2}+700^{2}-2(500)(700) \cos \left(133^{\circ}\right)$

$$
\text { magnitude }=1103.36
$$

Then, use law of sines to get the angle direction...

$$
\frac{\sin A}{700}=\frac{\sin (133)}{1103.36} \quad A=27.64^{\circ}
$$

Therefore, direction of vector is $27.64+28=55.64{ }^{\circ}$
12) Given the following forces: Force 1: 55 lbs Force 2: 80 lbs The resultant force: 125 lbs

Find the angle between the forces...
Step 1: Draw a diagram

> Note: we intentionally placed one vector on the x-axis...

Step 2: Convert the forces into vectors

Force 1: $<55,0\rangle$
Force 2: $\quad<80 \cos (\ominus), 80 \sin (\ominus)>$

Step 3: Find the resultant
First, add the forces: $<55+80 \cos (\ominus), 80 \sin (\ominus)>$

We know the magnitude of the resultant is

$$
\sqrt{(55+80 \cos (\ominus))^{2}+(80 \sin (\ominus))^{2}}=125
$$

$$
(55+80 \cos (\ominus))^{2}+(80 \sin (\ominus))^{2}=15625
$$

$$
3025+8800 \cos (\ominus)+6400 \cos ^{2} \ominus+6400 \sin ^{2} \ominus=15625
$$

$$
\underbrace{}_{6400}
$$

$$
8800 \cos (\ominus)=6200
$$

Thanks for visiting. (Hope it helps!)
If you have questions, suggestions, or requests, let us know.
Cheers

Also, at TeachersPayTeachers...
And, Mathplane.ORG for mobile and tablets
One more question...
Find the component form of the vector V if $\|\mathrm{V}\|=8$, and the angle it makes with the x-axis is 60 degrees...

Answer on the next page- \rightarrow

Find the component form of the vector V if $\|\mathrm{V}\|=8$
and the angle it makes with the x-axis is 60 degrees.
30-60-90 right triangle

$$
\begin{aligned}
& \mathrm{i}+\sqrt{3} \mathrm{j}=\mathrm{V} \\
& \quad\|\mathrm{~V}\|=2 \\
& \text { Unit vector: } \quad \frac{\mathrm{i}+\frac{\sqrt{3}}{2} \mathrm{j}}{2}
\end{aligned}
$$

$$
\text { Unit vector } \times 8=4 \mathrm{i}+4 \lambda \sqrt{3} \mathrm{j}
$$

60 degree angle and length $8!!$

