Trigonometry Identities II -

Double Angles

Brief notes, formulas, examples, and practice exercises

(With solutions)

Trigonometry: Double Angles

What is it? Expressing trigonometric functions of angles
equal to $2 x$ in terms of x
For example, $\operatorname{Sin}(40)$ can be expressed as the double angle $\operatorname{Sin} 2(20)$
Why would you use them? Sometimes double angles simplify equations and make it easier to perform complex operations.

Double Angle Formulas:

$\operatorname{Sin} 2 \mathrm{X}=2 \operatorname{Sin} \mathrm{XCos} \mathrm{X}$

(Using Sum Identity)

$$
\begin{aligned}
\operatorname{Sin} 2 \mathrm{X} & =\operatorname{Sin}(\mathrm{X}+\mathrm{X}) \\
& =\operatorname{Sin} \mathrm{X} \operatorname{Cos} \mathrm{X}+\operatorname{Cos} \mathrm{X} \operatorname{Sin} \mathrm{X} \\
& =2 \operatorname{Sin} \mathrm{X} \operatorname{Cos} \mathrm{X}
\end{aligned}
$$

Note: $\operatorname{Sin} 2 X \neq 2 \operatorname{Sin} X$

$$
\sin 2 x \neq \sin x+\sin x
$$

$\operatorname{Cos} 2 \mathrm{X}=\operatorname{Cos}^{2} \mathrm{X}-\operatorname{Sin}^{2} \mathrm{X}$

$$
\operatorname{Cos} 2 \mathrm{X}=\operatorname{Cos}(\mathrm{X}+\mathrm{X})
$$

(Using Sum Identity) $\quad=\operatorname{Cos} \mathrm{X} \operatorname{Cos} \mathrm{X}-\operatorname{Sin} \mathrm{XSin} \mathrm{X}$

$$
=\cos ^{2} x-\sin ^{2} x
$$

Note: $\quad \operatorname{Sin}^{2} \mathrm{X}+\operatorname{Cos}^{2} \mathrm{X}=1 \quad$ ("Pythagorean Trig Identity")

$$
\begin{aligned}
& \sin ^{2} x=1-\cos ^{2} x \\
& \cos ^{2} x=1-\sin ^{2} x
\end{aligned}
$$

Therefore, using substitution:
$\operatorname{Cos} 2 \mathrm{X}$

$$
=2 \operatorname{Cos}^{2} \mathrm{x}-1
$$

$$
=1-2 \operatorname{Sin}^{2} \mathrm{X}
$$

Examples:

1) $\quad \sin 2(90) \neq 2 \sin (90)=2 \quad X$
$\operatorname{Sin} 2(90)=\operatorname{Sin}(180)=0$

$$
=2 \operatorname{Sin}(90) \operatorname{Cos}(90)=2(1)(0)=0
$$

2) $\sin 2(30) \neq 2 \sin 30=2 \cdot 1 / 2=1 \quad \mathrm{X}$
$\operatorname{Sin} 2(30)=\operatorname{Sin} 60=\sqrt{3} / 2$
or

$$
2 \operatorname{Cos}(30) \operatorname{Sin}(30)=2 \cdot \sqrt{3} / 2 \cdot 1 / 2=\sqrt{3} / 2
$$

3) $\operatorname{Cos}(90)=0$

$$
\begin{aligned}
\cos 2(45) & =\cos ^{2}(45)-\sin ^{2}(45) \\
& =\left(\frac{\sqrt{2}}{2}\right)^{2}-\left(\frac{\sqrt{2}}{2}\right)^{2}=0
\end{aligned}
$$

4) $\operatorname{Cos}(120)=-1 / 2$

$$
\begin{aligned}
\cos 2(60) & =\cos ^{2}(60)-\sin ^{2}(60) \\
& =\left(\frac{1}{2}\right)^{2}-\left(\frac{\sqrt{3}}{2}\right)^{2}=-1 / 2
\end{aligned}
$$

$\operatorname{Cos}(120) \neq 2 \operatorname{Cos}(60)=2(1 / 2)=1 \quad X$

Trigonometry: Double Angles (continued)
$\operatorname{Tan} 2 \mathrm{X}=\frac{2 \operatorname{Tan} \mathrm{X}}{1-\operatorname{Tan}^{2} \mathrm{X}}$

| $\operatorname{Tan} 2 \mathrm{X}$ | $=\operatorname{Tan}(\mathrm{X}+\mathrm{X})$ | 5) $\operatorname{Tan}(120)=-\sqrt{3}$ |
| ---: | :--- | ---: | :--- |
| (Using Sum Identity) | $=\frac{\operatorname{Tan} \mathrm{X}+\operatorname{Tan} \mathrm{X}}{1-\operatorname{Tan} \mathrm{X} \operatorname{Xan} \mathrm{X}}$ | $\operatorname{Tan} 2(60)=\frac{2 \operatorname{Tan}(60)}{1-\operatorname{Tan}^{2}(60)}$ |
| | $=\frac{2 \operatorname{Tan} \mathrm{X}}{1-\operatorname{Tan}^{2} \mathrm{X}}$ | $=\frac{2 \sqrt{3}}{1-(\sqrt{3})^{2}}=-\sqrt{3}$ |

Note: $\frac{\operatorname{Sin} \mathrm{X}}{\operatorname{Cos} \mathrm{X}}=\operatorname{Tan} \mathrm{X} \quad$ ("Quotient Trig Identity")
Therefore, it follows that $\quad \operatorname{Tan} 2 \mathrm{x}=\frac{\operatorname{Sin} 2 \mathrm{x}}{\operatorname{Cos} 2 \mathrm{x}}$

Using Double Angle Formulas: Practice

1) $\sin X=\frac{3}{5}$ in Quadrant II

Find $\operatorname{Sin} 2 \mathrm{X}, \operatorname{Cos} 2 \mathrm{X}$, and $\operatorname{Tan} 2 \mathrm{X}$

$$
\begin{aligned}
& \operatorname{Sin} X=3 / 5 \\
& \operatorname{Cos} X=-4 / 5 \\
& \operatorname{Tan} X=-3 / 4 \\
& \operatorname{Sin}^{2} X=9 / 25 \\
& \operatorname{Cos}^{2} X=16 / 25 \\
& \operatorname{Tan}^{2} X=9 / 16
\end{aligned}
$$

$$
\begin{aligned}
& \sin 2 X=2(\sin X)(\operatorname{Cos} X)=2\left(\frac{3}{5}\right)\left(\frac{-4}{5}\right)=\frac{-24}{25} \\
& \operatorname{Cos} 2 X=\operatorname{Cos}^{2} X-\operatorname{Sin}^{2} X=\frac{16}{25}-\frac{9}{25}=\frac{7}{25} \\
& \operatorname{Tan} 2 X=\frac{2 \operatorname{Tan} X}{1-\operatorname{Tan}^{2} X}=\frac{2\left(\frac{-3}{4}\right)}{1-\left(\frac{9}{16}\right)}=\frac{\frac{-3}{2}}{\frac{7}{16}}=-\frac{24}{7}
\end{aligned}
$$

Check Solutions:
(**Using a calculator)
Since $\operatorname{Sin} X=3 / 5$, take the ArcSin of $3 / 5$ (or .60)

The Reference angle $\mathrm{X}=36.86^{\circ}$
Since X is in Quad II, the angle measures $180-36.86=143.14^{\circ}$

$$
\text { Also, since } \operatorname{Tan}=\frac{\operatorname{Sin}}{\operatorname{Cos}}
$$

$$
\begin{array}{ll}
\operatorname{Sin} 2(143.14)=\operatorname{Sin}(286.28) \cong-.96 & \frac{\operatorname{Sin}(2 \mathrm{X})}{\operatorname{Cos}(2 \mathrm{X})}=\operatorname{Tan}(2 \mathrm{X}) \\
\operatorname{Cos} 2(143.14)=\operatorname{Cos}(286.28) \stackrel{\cong 几}{=} .28 & \frac{\frac{-24}{25}}{\frac{7}{25}}=-\frac{24}{7} \\
\operatorname{Tan} 2(143.14)=\operatorname{Tan}(286.28) \stackrel{\text { 上. }}{=}-3.42 &
\end{array}
$$

2) $\sin 2 X+\operatorname{Sin} X=0 \quad[0,2 \pi)$

Double Angle
Identity
$2 \operatorname{Sin} \mathrm{X} \operatorname{Cos} \mathrm{X}+\operatorname{Sin} \mathrm{X}=0$
Factor $\quad \operatorname{Sin} \mathrm{X}(2 \operatorname{Cos} \mathrm{X}+1)=0$
Solve
$\operatorname{Sin} \mathrm{X}=0$
$\mathrm{X}=\pi$

$$
2 \operatorname{Cos} X+1=0
$$

$$
\cos X=\frac{-1}{2}
$$

$$
\mathrm{X}=\frac{2 \pi}{3} \quad \frac{4 \pi}{3}
$$

Check Solutions:
(Plug answers into original equation)
$\sin 2\left(\pi^{\prime}\right)+\sin \left(\pi^{\prime}\right)=0+0=0$
$\sin 2\left(\frac{2 \pi t}{3}\right)+\sin \left(\frac{2 \pi t}{3}\right)=\frac{-\sqrt{3}}{2}+\frac{\sqrt{3}}{2}=0$
$\operatorname{Sin} 2\left(\frac{4 \pi}{3}\right)+\sin \left(\frac{4 \pi}{3}\right)=\frac{\sqrt{3}}{2}+\frac{-\sqrt{3}}{2}=0$

Sum and Difference Formulas
$\operatorname{Sin}(30)=\frac{1}{2} \quad \operatorname{Sin}(60)=\operatorname{Sin}(30+30)$
But, $\operatorname{Sin}(60)$ is NOT equal to $\frac{1}{2}+\frac{1}{2}$

$$
\operatorname{Sin}(60)=\frac{\sqrt{3}}{2}
$$

$$
\begin{aligned}
& \operatorname{Cos}(90)=0 \\
& \operatorname{Cos}(60)=\frac{1}{2} \\
& \text { But, } \operatorname{Cos}(30) \text { is NOT equal to } 0-\frac{1}{2} \\
& \quad \operatorname{Cos}(30)=\frac{\sqrt{3}}{2}
\end{aligned}
$$

Addition/Subtraction Angle Formulas (SINE)
$\sin (x+y)=\sin x \cos y+\cos x \sin y$
$\sin (x-y)=\sin x \cos y-\cos x \sin y$

Addition/Subtraction Angle Formulas (COSINE)

$$
\cos (x+y)=\cos x \cos y-\sin x \sin y
$$

$\cos (x-y)=\cos x \cos y+\sin x \sin y$

$$
\begin{aligned}
& \text { Addition/Subtraction Angle Formulas (TANGENT) } \\
& \tan (x+y)=\frac{\sin (x+y)}{\cos (x+y)}=\frac{\tan x+\tan y}{1-\tan x \tan y} \\
& \tan (x-y)=\frac{\sin (x-y)}{\cos (x-y)}=\frac{\tan x-\tan y}{1+\tan x \tan y}
\end{aligned}
$$

Using the above formulas:

$\sin (60)$

$$
\begin{aligned}
\sin (30+30) & =\sin (30) \cos (30)+\cos (30) \sin (30) \\
& =\frac{1}{2} \cdot \frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2} \cdot \frac{1}{2} \\
& =\frac{2 \sqrt{3}}{4}=\frac{\sqrt{3}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \cos (30) \\
& \cos (90-60)=\cos (90) \cos (60)+\sin (90) \sin (60)
\end{aligned}
$$

$$
=0 \cdot \frac{1}{2}+1 \cdot \frac{\sqrt{3}}{2}=\frac{\sqrt{3}}{2}
$$

Application:

Find the exact value (without a calculator)

$$
\left.\begin{array}{lc}
\begin{array}{l}
\sin \left(15^{\circ}\right) \\
\sin (45-30)= \\
\sin (45) \cos (30)-\cos (45) \sin (30)
\end{array} & \begin{array}{c}
\cos \left(75^{\circ}\right) \\
\cos (30+45)
\end{array} \\
& \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2}-\frac{\sqrt{2}}{2} \cdot \frac{1}{2} \\
& \frac{\sqrt{6}}{4}-\frac{\sqrt{2}}{4}=\frac{\sqrt{6}-\sqrt{2}}{4} \\
\sin \left(15^{\circ}\right) \text { is approximately } .2588
\end{array}\right) \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2}-\frac{1}{2} \cdot \frac{\sqrt{2}}{2} .
$$

Practice Exercise- \rightarrow

Trigonometry: Double Angle Exercise

Part I: Evaluating Trig Values

1) $\sin \ominus=\frac{1}{2}$ $\operatorname{Cos} \ominus=$ $\operatorname{Tan} \ominus<0$
2) $\operatorname{Tan} X=\frac{-4}{9}$ in Quadrant II
Find the exact values of the other 5 trig functions.
3) $\operatorname{Cot} X=4$
$\operatorname{Sin} \mathrm{X}<0 \quad \operatorname{Cos} \mathrm{X}=$

Part II: Evaluating Double Angles

1) $\quad \sin \mathrm{U}=\frac{-4}{5} \quad \pi<\mathrm{U}<\frac{3 \pi}{2}$

Find $\operatorname{Sin}(2 \mathrm{U})$ and $\operatorname{Cos}(2 \mathrm{U})$
2) $\operatorname{Cot} \mathrm{X}=\frac{-7}{5} \quad \frac{\pi}{2}<\mathrm{x}<\pi$

Find $\operatorname{Sin}(2 \mathrm{X}), \operatorname{Cos}(2 \mathrm{X})$, and $\operatorname{Tan}(2 \mathrm{X})$

Trigonometry: Double Angle Exercise (continued)
III. Using Double Angle Identities

Solve the following (on the given intervals)

1) $\sin 2 x+\sin x=0 \quad[0,2 \uparrow T)$
2) $\cos 2 x+\cos x=0 \quad[0,2 \uparrow$ T)
3) $4 \operatorname{Sin} \ominus \operatorname{Cos} \ominus=1 \quad\left[0,360^{\circ}\right)$

IV. Solve and Graph

1) $\sin \ominus \cos \ominus=2 \cos \ominus \quad 0^{\circ} \leq \ominus<360^{\circ}$

2) $3 \sin x=1+\cos 2 x \quad 0 \leq x<2 \pi$

3) $\sin 2 x=3 \cos 2 x$

Trigonometry: Double Angle Exercise

Part I: Evaluating Trig Values

1) $\sin \ominus=\frac{1}{2}$

$$
\cos \ominus=\frac{-\sqrt{3}}{2}
$$

2) Tan $X=\frac{-4}{9}$ in Quadrant II
Find the exact values of the other 5 trig functions.
using Pythagorean Theorem:

$$
\begin{gathered}
(4)^{2}+(-9)^{2}=C^{2} \\
C=\sqrt{97}
\end{gathered}
$$

$$
\begin{aligned}
& \text { Sin }=\frac{\text { opposite }}{\text { hypotenuse }} \\
& \begin{array}{l}
\text { and, since } \tan <0 \\
\text { in quad II, we focus }
\end{array} \\
& \hline-\sqrt{3}
\end{aligned}
$$

on that triangle

Cot $=\frac{\text { adjacent }}{\text { opposite }}$
$\begin{array}{l}\operatorname{Sin}<0 \\ \text { in quad III }\end{array}$

Part II: Evaluating Double Angles

1) $\sin \mathrm{U}=\frac{-4}{5} \quad \pi<\mathrm{U}<\frac{3 \pi}{2}$

Find $\operatorname{Sin}(2 \mathrm{U})$ and $\operatorname{Cos}(2 \mathrm{U})$

$$
\begin{aligned}
\operatorname{Sin}(2 \mathrm{U}) & =2 \operatorname{Sin}(\mathrm{U}) \operatorname{Cos}(\mathrm{U}) \\
& =2\left(\frac{-4}{5}\right)\left(\frac{-3}{5}\right) \\
& =\frac{24}{25}
\end{aligned}
$$

$$
\begin{array}{ll}
\sin \mathrm{U}=\frac{-4}{5} & \sin ^{2} \mathrm{U}=\frac{16}{25} \\
\operatorname{Cos} \mathrm{U}=\frac{-3}{5} & \cos ^{2} \mathrm{U}=\frac{9}{25}
\end{array}
$$

$$
\begin{aligned}
\operatorname{Cos}(2 \mathrm{U}) & =\cos ^{2} \mathrm{U}-\operatorname{Sin}^{2} \mathrm{U} \\
& =\frac{9}{25}-\frac{16}{25}
\end{aligned}
$$

Note: To check solutions, use trig functions and

$$
=\frac{-7}{25}
$$ inverse trig functions on a calculator.

$$
\begin{aligned}
& \mathrm{U}=\operatorname{ArcSin}(-.80)=233.13^{\circ} \\
& \text { (in quad III) } \\
& \operatorname{Sin}(2 \mathrm{U})=\operatorname{Sin} 466.26^{\circ}=.96 \text { or } \frac{24}{25} \\
& \operatorname{Cos}(2 \mathrm{U})=\operatorname{Cos} 466.26=-.28 \text { or } \frac{-7}{25}
\end{aligned}
$$

2) $\operatorname{Cot} \mathrm{X}=\frac{-7}{5} \quad \frac{\pi}{2}<\mathrm{X}<\pi$

Find $\operatorname{Sin}(2 \mathrm{X}), \operatorname{Cos}(2 \mathrm{X})$, and $\operatorname{Tan}(2 \mathrm{X})$

$\operatorname{Sin} 2 \mathrm{X}=2 \operatorname{Sin} \mathrm{XCos} \mathrm{X}=2\left(\frac{5}{\sqrt{74}}\right)\left(\frac{-7}{\sqrt{74}}\right)=\frac{-70}{74}=\frac{-35}{37}$
$\operatorname{Cos} 2 x=\operatorname{Cos}^{2} x-\operatorname{Sin}^{2} x=\frac{49}{74}-\frac{25}{74}=\frac{24}{74}=\frac{12}{37}$
$\begin{aligned} & \operatorname{Tan} 2 \mathrm{X}=\frac{2 \operatorname{Tan} \mathrm{X}}{1-\operatorname{Tan}^{2} \mathrm{X}}=\frac{2\left(\frac{-5}{7}\right)}{1-\left(\frac{-5}{7}\right)^{2}}=\frac{\frac{-10}{7}}{\frac{24}{49}}\end{aligned}=\frac{-70}{24}$

$$
\text { Note: } \frac{\sin 2 x}{\cos 2 x}=\tan 2 x
$$

Trigonometry: Double Angle Exercise (continued)

SOLUTIONS

III. Using Double Angle Identities

Solve the following (on the given intervals)

1) $\sin 2 x+\sin x=0 \quad\left[0,2{ }^{2} \uparrow\right)$
$2 \operatorname{Sin} x \operatorname{Cos} x+\sin x=0$
factor and solve:

$$
\operatorname{Sin} x(2 \operatorname{Cos} x+1)=0
$$

For $\operatorname{Sin} x=0$

$$
x=0 \text { and } \pi
$$

For $2 \operatorname{Cos} x+1=0$
$\operatorname{Cos} x=\frac{-1}{2}$

$$
x=\frac{2-\pi}{3} \text { and } \frac{4-\pi}{3}
$$

$$
\begin{aligned}
\text { Since } \mathrm{U} & =2 \ominus \\
2 \ominus & =30^{\circ}, 150^{\circ}, 390^{\circ}, 510^{\circ}
\end{aligned}
$$

therefore,

$$
\ominus=15^{\circ}, \quad 75^{\circ}, \quad 195^{\circ}, 255^{\circ}
$$

$$
\begin{aligned}
& \text { For } \cos x+1=0 \\
& \qquad \cos x=-1 \quad x=\pi \\
& \text { For } 2 \cos x-1=0 \\
& \cos x=\frac{1}{2} \\
& x=\frac{\pi}{3} \text { and } \frac{5 \pi}{3}
\end{aligned}
$$

2) $\operatorname{Cos} 2 x+\cos x=0$
[0, 2 ' ${ }^{7}$ ')
$2 \operatorname{Cos}^{2} \mathrm{x}-1+\operatorname{Cos} \mathrm{x}=0$
factor and solve:
$2 \operatorname{Cos}^{2} \mathrm{x}+\operatorname{Cos} \mathrm{x}-1=0$
$(2 \operatorname{Cos} x-1)(\operatorname{Cos} x+1)=0$

$$
\operatorname{Sin}(U)=\frac{1}{2}
$$

$$
\text { then, } \mathrm{U}=30^{\circ} \text { and } 150^{\circ}
$$

AND, $390^{\circ} 510^{\circ}$ (and other coterminal angles)

IV. Solve and Graph

1) $\sin \ominus \cos \ominus=2 \cos \ominus \quad 0^{\circ} \leq \ominus<360^{\circ}$
$\sin \ominus \cos \ominus-2 \cos \ominus=0$

$$
\begin{array}{ll}
\cos \ominus(\sin \ominus-2)=0 \\
\cos \ominus=0 & \ominus=90^{\circ}, 270^{\circ}
\end{array}
$$

or
$\sin \theta-2=0$
$\sin \theta=2$ no solution

To graph, use $\frac{1}{2} \sin 2 \theta$ and $2 \cos \theta$
the intersections are the solutions

NOTE:

$$
\begin{aligned}
\frac{1}{2} \sin 2 \ominus & =\frac{1}{2}(2 \sin \ominus \cos \ominus) \\
& =\sin \ominus \cos \ominus
\end{aligned}
$$

SOLUTIONS

2) $3 \sin x=1+\cos 2 x \quad 0 \leq x<2 \Pi$
$3 \sin x=1+\left(1-2 \sin ^{2} x\right) \quad$ (double angle identity)
$2 \sin ^{2} x+3 \sin x-2=0$
$(2 \sin x-1)(\sin x+2)=0$

In the graph, the intersections

of $3 \sin x$ and $1+\cos 2 x$

$$
\begin{aligned}
& 2 \sin x-1=0 \\
& \sin x=\frac{1}{2} \\
& \text { or }
\end{aligned}
$$

$\sin x+2=0$
$\sin x=-2 \quad$ no solution

$$
\begin{aligned}
& \frac{\sin 2 x}{\cos 2 x}=1 \\
& \tan 2 x=1
\end{aligned}
$$

Let $\mathrm{A}=2 \mathrm{x}$
Then, $\tan \mathrm{A}=1$

$$
\begin{aligned}
& \mathrm{A}=\frac{\pi T}{4}, \frac{5 \pi}{4}, \frac{9 \pi}{4}, \frac{13 \pi}{4}, \ldots \\
& \text { since } \mathrm{A}=2 \mathrm{x}, \quad \mathrm{x}=\frac{\pi \uparrow}{8}, \frac{5 \pi}{8}, \frac{9 \pi}{8}, \frac{13 \pi}{8}, \ldots
\end{aligned}
$$

The solutions are the intersections of the two functions..

Thanks for visiting. (Hope it helped!)
If you have questions, suggestions, or requests, let us know.
Good luck!

Also, at Facebook, Google+, and TeachersPayTeachers, TES, and Pinterest

