Special Quadrilaterals 2

Notes, examples, practice questions (and, solutions)

Topics include slope, distance, properties of quadrilaterals, proofs, and more...

Rectangle Property proofs

Given: Rectangle RECT

M is midpoint of $\overline{\mathrm{TC}}$
Prove:
\triangle REM is isosceles

Given: RECT is a rectangle $\overline{\mathrm{RB}} \cong \mathrm{TD}$

Prove: $\triangle \mathrm{ABD}$ is isosceles

Statements	Reasons
1) Rectangle RECT	1) Given
2) $\overline{\mathrm{RT}} \xlongequal{\underline{\mathrm{N}}} \overline{\mathrm{EC}}$	2) Definition of Rectangle (opposite sides congruent)
3) M is midpoint of $\overline{T C}$	3) Given
4) $\overline{\mathrm{TM}} \stackrel{N}{=} \overline{\mathrm{CM}}$	4) Definiton of midpoint (midpoint divides segment into congruent halves)
5) $\angle \mathrm{T}$ and $\angle \mathrm{C}$ are right angles	5) Definiton of Rectangle (angles are 90 degrees)
6) $\angle \mathrm{T} \stackrel{\sim}{=} \angle \mathrm{C}$	6) All right angles are congruent
7) \triangle RTM $\stackrel{\mu}{=} \triangle \mathrm{ECM}$	7) SAS (Side-Angle-Side) 2, 6, 4
8) $\overline{\mathrm{RM}} \cong \overline{\mathrm{EM}}$	8) CPCTC (corresponding parts of congruent triangles are congruent)
9) \triangle REM is isosceles	9) Definition of Isosceles Triangle (2 or more sides of triangle are congruent)

Statements	Reasons
1) Rectangle RECT	1) Given
2) $\overline{\mathrm{RE}} \cong \overline{\mathrm{CT}}$ 2) Definition of Rectangle (opposite sides are congruent)	
3) $\overline{\mathrm{RB}} \cong \overline{\mathrm{TD}}$ 3) Given 4) $\angle \mathrm{REC}$ and $\angle \mathrm{TCE}$ are right angles 4) Definition of Rectangle (angles are right angles) 5) REB and REC are supplementary TCE and TCD are supplementary 5) Definition of Supplementary (angles that form a straight angle are supplementary) 6) REB and TCD are right angles 6)Subtraction property 7) $\triangle \mathrm{REB}=\triangle \mathrm{TCD}$ 7) RHL (Right Angle- Hypotenuse - Leg) $6,3,2$ 8) $\angle \mathrm{B}=\angle \mathrm{D}$ 8) CPCTC (corresponding parts of congruent 4) $\overline{\mathrm{AB}} \bumpeq \overline{\mathrm{AD}}$ 9) If congruent angles, then congruent sides (in triangle, if congruent angles, then opposite sides are congruent)	

10) Definition of Isosceles -2 or more congruent sides (Also, base angles of triangle are congruent)

Coordinate Geometry: Verifying/Identifying Special Quadrilaterals

Quadrilaterals and Slope Parallelogram: opposite sides parallel
Rectangle: opposite sides parallel; adjacent sides are perpendicular
Rhombus: opposite sides parallel; diagonals are perpendicular
square: diagonals are perpendicular; adjacent sides are perpendicular; opposite sides parallel
kite: diagonals are perpendicular; opposite sides are not parallel
trapezoid: one pair of opposite sides are parallel
Quadrilaterals and the Distance Formula
Parallelogram: opposite sides are congruent
Rhombus: all sides are congruent
Rectangle: opposite sides congruent AND diagonals congruent
Square: all sides congruent AND diagonals congruent
Kite: pair of consecutive sides are congruent
Isosoceles trapezoid: one pair of congruent (opposite) sides AND congruent diagonals

Example: Verify using slope that the quadrilateral is a rhombus.

If the slopes of the opposites sides are equal, then it's a parallelogram...
RH: slope is $4 / 3$
HO: slope is 0
OM: slope is $4 / 3$
RM : slope is 0
Then, if the diagonals are perpendicular, then it's a rhombus...
HM: slope is -2
OR: slope is $1 / 2$
(Note: since $4 / 3$ and 0 are not opposite reciprocals, the sides are not perpendicular. Therefore, the figure is not a square.)

Example: Verify the quadrilateral is a rhombus using distance/length only
If the distances between the sides are the same, it's a rhombus or a square.
HO: distance is 5
MO: using distance formula --- $\sqrt{(7-10)^{2}+(1-5)^{2}}=5$
RM: length is 5 units
RH: using distance formula $---\sqrt{(2-5)^{2}+(1-5)^{2}}=5$
Then, if the diagonals are congruent, it's a square.. If not, it's only a rhombus..

$$
\begin{aligned}
& \mathrm{RO}: \sqrt{(2+10)^{2}+(1-5)^{2}}=4 \lambda \sqrt{5} \\
& \mathrm{HM}: \sqrt{(.7+5)^{2}+(1-5)^{2}}=2 \lambda \sqrt{5}
\end{aligned}
$$

Exercises - \rightarrow

1) Parallelogram

2) Kite

3) Rectangle

4) Rhombus

5) Parallelogram

6) In the isosceles trapezoid TRAP,
what are the measures of $\angle \mathrm{P}$ and $\angle \mathrm{T}$?

7) Find values for each variable for the given parallelogram:

8) Triangles ROM and ROH are equilateral...

If the diagonal HM creates an angle HMO of measure $3 \mathrm{x}-6$, and $R O=10 \mathrm{x}$,
then what is the perimeter of rhombus RHOM?

4) RECT is a rectangle...
$R C=x^{2}$
$R E=4-x$
$\mathrm{ET}=6 \mathrm{x}-5$
Find the possible values of x

5) For the following rhombus, determine x and $y \ldots$

6) If the area is 78 square units, what is x ?

7) In the following parallelogram, find the angle measures of 1,2 , and $3 \ldots$

8) In rhombus MIND, $\angle \mathrm{DSN}=2 \mathrm{x}^{2}+5 \mathrm{x}+15$

$$
\begin{array}{ll}
\mathrm{DN} & =2 \mathrm{x}+3 \mathrm{y} \\
\mathrm{DM} & =5 \mathrm{y}+4 \\
\mathrm{DS} & =\mathrm{xy}
\end{array} \quad \text { Find } \mathrm{x}, \mathrm{y}, \text { and } \overline{\mathrm{ID}}
$$

$$
\begin{aligned}
& \overline{\mathrm{MA}}=\mathrm{x}+5 \\
& \overline{\mathrm{AT}}=2 \mathrm{x}+1 \\
& \overline{\mathrm{MH}}=2 \mathrm{y}+1 \\
& \overline{\mathrm{HT}}=3 \mathrm{y}-2
\end{aligned}
$$

Find: the perimeter
10) Find the perimeter of square SQAR where vertices are $\mathrm{Q}(-4,1)$ and $\mathrm{R}(-1,6)$.
a) 16
b) $4 / \sqrt{34}$
c) $4 \sqrt{17}$
d) 32
e) $16 \sqrt{2}$
11) If $A B C D$ is a parallelogram, what is x ? Is ABCD a rhombus?

Describe the most exact quadrilateral using distance formula only.

1) Consecutive Vertices: $(1,1)(4,5)(9,-7)(6,-11)$
2) Consecutive Vertices: $(0,3)(3,0)(-6,-9)(-9,-6)$
3) Consecutive Vertices: $(0,8)(3,4)(3,9)(0,13)$
4) Consecutive Vertices: $(2,5)(3,-2)(8,3)(6,7)$

Describe the most exact quadrilateral using distance formula only.
5) Consecutive Vertices: $(3,5)(7,4)(6,0)(2,1)$
6) Consecutive Vertices: $(-1,8)(5,2)(-3,3)(7,-7)$
7) Consecutive Vertices: $(-10,5)(0,3)(-10,-10)(-20,3)$
8) Consecutive Vertices: $(0,0)(-3,4)(8,4)(5,0)$

Describe the most exact quadrilateral using slope only.

1) Consecutive Vertices: $(1,1)(4,5)(9,-7)(6,-11)$
2) Consecutive Vertices: $(0,3)(3,0)(-6,-9)(-9,-6)$
3) Consecutive Vertices: $(0,8)(3,4)(3,9)(0,13)$
4) Consecutive Vertices: $(2,5)(3,-2)(8,3)(6,7)$

Describe the most exact quadrilateral using slope only.
5) Consecutive Vertices: $(3,5)(7,4)(6,0)(2,1)$

6) Consecutive Vertices: $(-3,3)(7,-7)(5,2)(1,6)$
7) Consecutive Vertices: $(-10,5)(0,3)(-10,-10)(-20,3)$

8) Consecutive Vertices: $(0,0)(-3,4)(8,4)(5,0)$

Identifying Special Quadrilaterals: Triangle Congruency and Midsegment Theorems

Determine the name of the figure formed by connecting the midpoints of the sides of each quadrilateral.
0) Quadrilateral

Connecting the midpoints...

The inside is a parallelogram... (opposite sides are congruent)
2) Kite:

1) Rhombus:

2) Square:

3) Parallelogram:

4) Isosceles Trapezoid

Prove: The diagonals of a rectangle bisect each other.

Prove: In an isosceles right triangle, the median from the vertex to the hypotenuse is also an altitude.

Prove: A quadrilateral formed by connecting the midpoints of a rectangle's sides is a rhombus.

[^0]

1) Parallelogram

2) Kite

3) Rectangle

4) Rhombus

5) Parallelogram

Rhombus:
angle 1: since diagonals are angle bisectors, 46
angle 2 : since diagonals are perpendicular, 90 angle 3: since triangles interior equal 180, 44

consecutive angles are supplementary
method 2:
opposite angles congruent

$$
61 \text { and } 119
$$

1) In the isosceles trapezoid TRAP,
what are the measures of $\angle \mathrm{P}$ and $\angle \mathrm{T}$?

$$
\begin{aligned}
& x^{2}-10=8 x+38 \\
& x^{2}-8 x-48=0 \\
& (x-12)(x+4)=0
\end{aligned}
$$

$$
x=12 \text { or }-4
$$

If $\mathrm{x}=12$, then angle $\mathrm{T}=134$, angle $\mathrm{R}=134$, and so, angle P and angle $\mathrm{A}=46$
If $\mathrm{x}=-4$, then angle $\mathrm{T}=6$, angle $\mathrm{R}=6$, and so, angle P and angle $\mathrm{A}=174 \ldots$
It doesn't look like the diagram, but it is a possiblity!!
2) Find values for each variable for the given parallelogram:

Consecutive angles are supp.
$4 x+5 x=180$
$x=20$
Opposite angles are congruent
$5 \mathrm{x}=100$..
So, $2 \mathrm{y}=100$
$\mathrm{y}=50$
3) Triangles ROM and ROH are equilateral...

If the diagonal HM creates an angle HMO of measure $3 \mathrm{x}-6$, and $R O=10 \mathrm{x}$,
then what is the perimeter of rhombus RHOM?

since angle M is 60 degrees, the diagonal bisects it ----> 30 degrees
$3 \mathrm{x}-6=30 \quad \mathrm{x}=12$
Then, $\mathrm{RO}=12(10)=120$
therefore, perimeter is 480 units
4) RECT is a rectangle...
$R C=x^{2}$
$R E=4-x$
$\mathrm{ET}=6 \mathrm{x}-5$

Find the possible values of x

$$
\begin{aligned}
& x^{2}=6 x-5 \\
& x^{2}-6 x+5=0 \\
& (x-1)(x-5)=0 \\
& \quad x=1,5
\end{aligned}
$$

no solution
x cannot be 5 , because RE would have a negative length!
x cannot be 1 , because ET and RC would have length 1 ...
And, RE would have length $3 \ldots$ That's not possible! because the hypotenuse cannot be smaller than the side!
5) For the following rhombus, determine x and $y \ldots$

$y-12=2 y-33 \quad$ (all sides congruent)	
$5 x=90 \quad$ (diagonals are perpendicular)	$x=18$
$(x+35$ is irrelevant to solving)	$y=21$

6) If the area is 78 square units, what is x ?

$$
\begin{aligned}
& 78=1 / 2(x)(2 x+14) \\
& 78=(x)(x+7) \\
& 78=x^{2}+7 x \\
& x^{2}+7 x-78=0 \\
& (x+13)(x-6)=0
\end{aligned}
$$

$x=-13$ or 6
since side length must be positive, we eliminate -13 .
Therefore, $x=6$
7) In the following parallelogram, find the angle measures of 1,2 , and $3 \ldots$

$3=108 \quad$ opposite angles are congruent
since consecutive angles are supplementary, $1+2=72 \ldots$.
$1=34$ and $2=38$
8) In rhombus $\mathrm{MIND}, \angle \mathrm{DSN}=2 \mathrm{x}^{2}+5 \mathrm{x}+15$
$\begin{aligned} \mathrm{DN} & =2 \mathrm{x}+3 \mathrm{y} \\ \mathrm{DM} & =5 \mathrm{y}+4 \\ \mathrm{DS} & =\mathrm{xy}\end{aligned} \quad$ Find x, y, and $\overline{\mathrm{ID}}$

Diagonals are perpendicular
DSN $=2 \mathrm{x}^{2}+5 \mathrm{x}+15=90$
$2 \mathrm{x}^{2}+5 \mathrm{x}-75=0$
$(2 x+15)(x-5)=0$
$x=-15 / 2$ or 5

Note: $\mathrm{DS}=x y .$. so, if $\mathrm{y}>0$, then x must be $>0 \ldots$
therefore, $x=5, y=3$

$$
\text { and, } \mathrm{ID}=2(\mathrm{xy})=30
$$

Diagonals bisect each other...

$$
\begin{aligned}
& \text { All sides are congruent } \\
& \begin{array}{c}
2 \mathrm{x}+3 \mathrm{y}=5 \mathrm{y}+4 \\
2 \mathrm{x}-2 \mathrm{y}=4 \\
\mathrm{x}-\mathrm{y}=2
\end{array}
\end{aligned}
$$

$$
\text { so, if } x=5 \text {, then } y=3
$$

OR
if $\mathrm{x}=-15 / 2$, then $\mathrm{y}=-19 / 2$
(**However, this is impossible because the sides would be negative!)
quick check: sides $=19$
angle $=90$
and $x y=15$
$\overline{\mathrm{MA}}=\mathrm{x}+5$
$\overline{\mathrm{AT}}=2 \mathrm{x}+1$
$\overline{\mathrm{MH}}=2 \mathrm{y}+1$
$\overline{\mathrm{HT}}=3 \mathrm{y}-2$$\quad$ Step 1: Sketch the figure

$$
\begin{aligned}
& \begin{array}{l}
\text { Step 2: Use properties of kite } \\
\text { (consecutive side pairs congruent) }
\end{array} \\
& \mathrm{MH}=\mathrm{MA} \quad \mathrm{HT}=\mathrm{AT} \\
& 2 y+1=x+5 \quad 3 y-2=2 x+1 \\
& x-2 y=-4 \\
& 2 x-3 y=-3 \\
& \left\{\begin{array}{r}
\text { solve the system } \\
2 x-3 y=-3 \\
-2 x+4 y=8
\end{array}\right. \\
& \text { step 3: "turn the kite" and assume } \\
& \text { different consectuive pairs } \\
& \mathrm{MA}=\mathrm{AT} \quad \mathrm{MH}=\mathrm{HT} \\
& x+5=2 x+1 \quad 2 y+1=3 y+2 \\
& x=4 \quad y=3 \\
& \text { perimeter: } 9+9+7+7 \\
& 32 \\
& \text { perimeter: } 13+13+11+11 \\
& 48
\end{aligned}
$$

10) Find the perimeter of square SQAR where vertices are $\mathrm{Q}(-4,1)$ and $\mathrm{R}(-1,6)$.
a) 16
b) $4 \sqrt{34}$
c) $4 \sqrt{17}$
d) 32
e) $16 / \sqrt{2}$

$(-1,6)$
length of diagonal (distance formula) is $\sqrt{34}$
$(-4,1) \mathrm{Q}$
$\begin{aligned} & \text { since } 45-45-90 \text { triangle, } \\ & \text { each side is }\end{aligned} \quad \frac{\sqrt{34}}{\sqrt{2}}=\sqrt{17}$
perimeter is $4 / \sqrt{17}$
11) If $A B C D$ is a parallelogram, what is x ?

Is ABCD a rhombus?

Since it is a parallelogram, opposite sides are congruent...
$x^{2}-x=2 x+54$
$x^{2}-3 x-54=0$
if $x=9$, then the sides are $72,75,72,75$
$(x-9)(x+6)=0$
$x=9,-6$
if $x=-6$, then the sides are $42,-60,42,-60$ doesn't exist!

Describe the most exact quadrilateral using distance formula only.

1) Consecutive Vertices: $(1,1)(4,5)(9,-7)(6,-11)$
$(1,1)$ to $(4,5) \quad \sqrt{(1-4)^{2}+(1-5)^{2}}=5$
$(4,5)$ to $(9,-7) \quad \sqrt{(9-4)^{2}+(-7-5)^{2}}=13$
$(9,-7)$ to $(6,-11) \quad \sqrt{(9-6)^{2}+(-7--11)^{2}}=5$
Since opposite sides are congruent, it must be a parallelogram...
(Since not all sides are same, we can eliminate square and rhombus)
$(6,-11)$ to $(1,1) \quad \sqrt{(1-6)^{2}+(1--11)^{2}}=13$
diagonals: $(1,1)$ to $(9,-7) \quad 8 \sqrt{2}$ $(4,5)$ to $(6,-11) \quad 2 \sqrt{65}$

Since the diagonals are NOT congruent, it cannot be a rectangle..

2) Consecutive Vertices: $(0,3)(3,0)(-6,-9)(-9,-6)$
$(0,3)$ to $(3,0) \quad 3 \sqrt{2}$
Since opposite sides are congruent,
$(3,0)$ to $(-6,-9) \quad 9 \sqrt{2}$
the quadrilateral is a parallelogram...
$(-6,-9)$ to $(-9,-6) \quad 3 \sqrt{2}$
(Since the 4 sides are not all the same, it eliminates rhombus and square)
$(-9,-6)$ to $(0,3) \quad 9 \sqrt{2}$
diagonals:

$$
\begin{array}{ll}
(0,3) \text { to }(-6,-9) & 6 \sqrt{5} \\
(3,0) \text { to }(-9,-6) & 6 \sqrt{5}
\end{array}
$$

Then, since the diagonals are congruent, it is a rectangle...
3) Consecutive Vertices: $(0,8)(3,4)(3,9)(0,13)$
$(0,8)$ to $(3,4) \quad 5$
$(3,4)$ to $(3,9) \quad 5$
$(3,9)$ to $(0,13) 5$
$(0,13)$ to $(0,8) 5$
diagonals:
Since all the sides are the same, it's a rhombus or a square...
$(0,8)$ to $(3,9) \quad \sqrt{10}$
$(3,4)$ to $(0,13) \quad 3 \sqrt{10}$
Then, since the diagonals are NOT congruent, then it cannot be a square..

The quadrilateral is a rhombus...
4) Consecutive Vertices: $(2,5)(3,-2)(8,3)(6,7)$
$(2,5)$ to $(3,-2) \quad 5 \sqrt{2}$
$(3,-2)$ to $(8,3) \quad 5 \sqrt{2}$
$(8,3)$ to $(6,7) \quad 2 \sqrt{5}$
Since there are 2 pairs of consecutive congruent sides, the figure is a kite!

$(6,7)$ to $(2,5) \quad 2 \sqrt{5}$

Describe the most exact quadrilateral using distance formula only.
5) Consecutive Vertices: $(3,5)(7,4)(6,0)(2,1)$
$(3,5)$ to $(7,4) \quad \sqrt{(3-7)^{2}+(5-4)^{2}}=\sqrt{17}$
$(7,4)$ to $(6,0) \quad \sqrt{(7-6)^{2}+(4-0)^{2}}=\sqrt{17}$
$(6,0)$ to $(2,1) \quad \sqrt{(6-2)^{2}+(0-1)^{2}}=\sqrt{17}$
$(2,1)$ to $(3,5) \quad \sqrt{(2-3)^{2}+(1-5)^{2}}=\sqrt{17}$
diagonals: $\quad(3,5)$ to $(6,0) \quad$ distance $=\sqrt{34} \quad$ the lengths of the diagonals are congruent...
Therefore, it is a square!

6) Consecutive Vertices: $(-3,3)(7,-7)(5,2)(1,6)$
$(-3,3)$ to $(7,-7) 10 / \sqrt{2}$
since the distances between consecutive points are all the same, sides are congruent...
It's a rhombus... But, is it a square?

$$
(7,4) \text { to }(2,1) \quad \text { distance }=\sqrt{34}
$$

$(7,-7)$ to $(5,2) \quad \sqrt{85}$
$(5,2)$ to $(1 , 6) \longdiv { 4 \sqrt { 2 } }$
$(1,6)$ to $(-3,3) \quad 5$
diagonals: $(-3,3)$ to $(5,2) \quad \sqrt{65}$

$$
(7,-7) \text { to }(1,6) \quad \sqrt{205}
$$

the lengths of all 4 sides are different, so it's either a quadrilateral or trapezoid..

Midpoint distances: $(2,-2)$ to $(3,4)$

$$
\sqrt{37}
$$

this length is middle, so
tit's a midsegment.

7) Consecutive Vertices: $(-10,5)(0,3)(-10,-10)(-20,3)$
$(-10,5)$ to $(0,3) \quad 2 \sqrt{26}$
$(0,3)$ to $(-10,-10) \quad \sqrt{269} \quad \begin{aligned} & 2 \text { pairs of congruent sides... } \\ & \text { It's a kite.. }\end{aligned}$
$(-10,-10)$ to $(-20,3) \quad \sqrt{269}$
$(-20,3)$ to $(-10,5) \quad 2 \sqrt{26}$

8) Consecutive Vertices $(0,0)(-3,4)(8,4)(5,0)$

$(0,0)$ to $(-3,4)$	5
$(-3,4)$ to $(8,4)$	11

$(8,4)$ to $(5,0) \quad 5$
$(5,0)$ to $(0,0) \quad 5$

$$
\begin{array}{ll}
\text { diagonals: }(0,0) \text { to }(8,4) & 4 \sqrt{5} \\
(-3,4) \text { to }(5,0) & 4 \sqrt{5}
\end{array} \begin{aligned}
& \text { the length of the segment connecting } \\
& \text { midpoints is the average of sides.. } \\
& \text { therefore, it is a midsegment... }
\end{aligned}
$$

diagonals are congruent: either a rectangle or isosceles trapezoid

Describe the most exact quadrilateral using slope only.

1) Consecutive Vertices: $(1,1)(4,5)(9,-7)(6,-11)$

$$
\begin{aligned}
& (1,1) \text { to }(4,5) \frac{5-1}{4-1}=\frac{4}{3} \\
& (4,5) \text { to }(9,-7) \frac{-7-5}{9-4}=\frac{-12}{5} \\
& (9,-7) \text { to }(6,-11) \frac{-11--7}{6-9}=\frac{-4}{-3}=\frac{4}{3} \\
& (6,-11) \text { to }(1,1) \frac{1--11}{1+6}=\frac{12}{-5} \\
& \text { diagonals: }(1,1)(9,-7) \quad \text { slope: }-1 \\
& (4,5)(6,-11) \text { slope: }-8
\end{aligned}
$$

since opposite sides have the same slopes, it must be a parallelogram...

Then,
since the slopes are not opposite reciprocals, it cannot be square or rectangle...

And, since diagonals are not perpendicular, it cannot be a rhombus

2) Consecutive Vertices: $(0,3)(3,0)(-6,-9)(-9,-6)$

Slopes of sides:
$(0,3)$ to $(3,0) \quad-1$
$(3,0)$ to $(-6,-9) \quad 1$
$(-6,-9)$ to $(-9,-6)-1$
$(-9,-6)$ to $(0,3) 1$

Slopes of diagonals:
$(0,3)$ to $(-6,-9) \quad 2$
$(3,0)$ to $(-9,-6) \quad 1 / 2$

Since opposite sides are parallel, the quadrilateral is a parallelogram...
Then, since the consecutive sides have slopes that are opposite reciprocals, the sides are perpendicular; right angles... So, it's a rectangle or square...

Then, since the diagonals are NOT perpendicular (slopes are not opposite reciprocals), the figure can't be a square...
So, it's a rectangle...

4) Consecutive Vertices: $(2,5)(3,-2)(8,3)(6,7)$
$(2,5)$ to $(3,-2) \quad-7$
$(3,-2)$ to $(8,3) \quad 1$
Since none of the side slopes are congruent, the figure is not a trapezoid or parallelogram...
$(8,3)$ to $(6,7) \quad-2$
$(6,7)$ to $(2,5) \quad 1 / 2$
Slopes of diagonals:
$(2,5)$ to $(8,3) \quad-1 / 3$
$(3,-2)$ to $(6,7) 3$

Since slopes of opposite sides are the same, the quadrilateral is a parallelogram...
(and, since the slopes are not opposite reciprocals, the corners are NOT right angles..)

Then, since the slopes of the diagonals are opposite reciprocals, the diagonals are perpendicular...

Therefore, it is a rhombus...

Then, since the slopes of the diagonals are opposite reciprocals, the diagonals are perpendicular...

Therefore, the quadrilateral is a kite

Kite

Describe the most exact quadrilateral using slope only.

5) Consecutive Vertices: $(3,5)(7,4)(6,0)(2,1)$
$(3,5)$ to $(7,4) \quad-1 / 4$
$(7,4)$ to $(6,0) \quad 4$
$(6,0)$ to $(2,1) \quad-1 / 4$
$(2,1)$ to $(3,5) \quad 4$
since opposite sides have same slope, they are parallel.. (parallelogram)
And, since consecutive sides have opposite reciprocals, the sides are perpendicular.. (rectangle)
slope of diagonals:
$(3,5)$ to $(6,0) \quad-5 / 3$
since diagonals are opposite reciprocals, they are perpendicular...
$(7,4)$ to $(2,1) \quad 3 / 5$
Therefore, figure is a square

6) Consecutive Vertices: $(-3,3)(7,-7)(5,2)(1,6)$
$(-3,3)$ to $(7,-7)-1$
$(7,-7)$ to $(5,2) \quad-9 / 2$
$(5,2)$ to $(1,6)-1$
$(1,6)$ to $(-3,3) 3 / 4$
slope of diagonals

$$
\begin{aligned}
& (-3,3) \text { to }(5,2)-1 / 8 \\
& (7,-7) \text { to }(1,6)-13 / 6
\end{aligned}
$$

since one pair of opposite sides have the same slope, then there are only 2 parallel sides...
(trapezoid)
since slopes of other opposite sides are NOT reciprocals, it is not isosceles...
since slopes of diagonals are not opposites, this is NOT an isosceles trapezoid...

7) Consecutive Vertices:
$(-10,5)(0,3)(-10,-10)(-20,3)$
$(-10,5)$ to $(0,3) \quad-1 / 5$
$(0,3)$ to $(-10,-10) \quad 13 / 10$
$(-10,-10)$ to $(-20,3)-13 / 10$
The slopes are opposites...
$(-20,3)$ to $(-10,5) \quad 1 / 5$
slope of diagonals: Diagonals are perpendicular... KITE
$(-10,5)$ to $(-10,-10)$ undefined
$(0,3)$ to $(-20,3) \quad 0$
8) Consecutive Vertices $(0,0)(-3,4)(8,4)(5,0)$
$(0,0)$ to $(-3,4) \quad-4 / 3$
$(-3,4)$ to $(8,4) \quad 0$
$(8,4)$ to $(5,0) 4 / 3$
$(5,0)$ to $(0,0) \quad 0$
One pair of parallel sides
diagonal slopes:
$(0,0)$ to $(8,4) \quad 1 / 2$
$(-3,4)$ to $(5,0)-1 / 2$
diagonal slopes are opposites...

Determine the name of the figure formed by connecting the midpoints of the sides of each quadrilateral.
0) Quadrilateral

Connecting the midpoints...

The inside is a parallelogram...

Rectangle
Diagonals of rhombus are perpendicular. And, each segment is parallel to a diagonal. Therefore, consecutive sides are perpendicular.
2) Kite:

Rectangle
(Triangle) Midsegment Theorem: If a segment joins the midpoints of angle sides of a triangle, then the segment is parallel to the base and $1 / 2$ the length of the base.

1) Rhombus:

(These midsegments are $1 / 2$ the length of the horizontal diagonal)
(opposite sides are congruent)
2) Square:

Square

Four congruent triangles (side-angle-side) - interior quadrilateral sides congruent

Since triangles are isosceles w/ vertex 90 degrees.
Then, base angles are 45 degrees...
So, interior quadrilateral angles are all 90 degrees
5) Parallelogram:

Parallelogram
Opposite triangles are congruent, so opposite sides of interior quadrilateral are congruent
However, only the opposite angles are congruent, so the interior quadrilateral is not equiangular.
6) Trapezoid

Parallelogram

Using midsegment theorem, we know that opposite sides are congruent..
Therefore, this is a parallelogram
(Note: Since the diagonals are not necessarily congruent or perpendicular, the interior figure is not necessarily a rectangle or rhombus)
7) Isosceles Trapezoid

Rhombus
Since the base angles are congruent. And the sides are congruent, the bisectors form 2 pairs of congruent triangles.
(Using CPCTC, we have 2 pairs of consecutive congruent sides)

Kite?
But, remember, the diagonals are congruent... Therefore, the 4 midsegments (which are $1 / 2$ the length of the diagonals) are all congruent! It's a rhombus..

After labeling the midpoints, we can find the slopes.
(0, 2b)

Prove: The diagonals of a rectangle bisect each other.

> find the midpoint of each diagonal:

Since each midpoint is (a, b), they bisect each other.

Prove: In an isosceles right triangle,
the median from the vertex to the hypotenuse is also an altitude.

since the slopes are 1 and -1 ,
the median is perpendicular to the hypotenuse...
Therefore, it is an altitude...

Prove: A quadrilateral formed by connecting the midpoints of a rectangle's sides is a rhombus.

(from above, we proved the midpoints form a parallelogram.... Now, we'll go further to show it's a rhombus!)

distance/length of each side..	The diagonals are perpendicular. (slopes are opposite reciprocals)
	One diagonal is vertical; one diagonal is horizontal

Prove: The midpoints of a quadrilateral form a parallelogram.

$$
\text { slope: } \frac{c}{b} \text { and } \frac{c}{b}
$$

$\frac{e}{d-a}$ and $\frac{e}{d-a}$
\sim opposite sides parallel
(2d, 2e)

Thanks for visiting. (Hope it helped!)

If you have questions, suggestions, or requests, let us know.
Cheers

Also, at TES and TeachersPayTeachers
And, Mathplane Express for mobile at mathplane.ORG

[^0]: Prove: The midpoints of a quadrilateral form a parallelogram.

