Geometry Similarity \& Proportions Review Questions (and Answers)

Topics include Angle Bisector Theorem, "Shadow Questions", Side-Splitter, Perimeter/Area/Volume Ratios, and more.

1) Angle Bisector Theorem

$$
\begin{aligned}
& \frac{6}{3}=\frac{9}{4.5} \\
& \frac{6}{9}=\frac{3}{4.5}
\end{aligned}
$$

2) Side-Splitter Theorem

$$
\begin{aligned}
& \frac{4}{3}=\frac{5}{3.75} \\
& \frac{4}{5}=\frac{3}{3.75}
\end{aligned}
$$

3) Corresponding triangles and angles

$$
\begin{aligned}
& \frac{6}{5} \neq \frac{9}{x} \\
& \frac{6}{5}=\frac{6+9}{x}
\end{aligned}
$$

If 2 polygons are similar, then

1) the ratio of their corresponding sides, perimeters, medians, diagonals, and angle bisectors are the same...
2) the ratio of their areas is equal to the square of the ratio of their corresponding sides...
3) the ratio of their volumes is equal to the cube of the ratio of their corresponding sides....

Example: $\mathrm{AB}: \mathrm{BC}$ is $3: 10$
If $\mathrm{AC}=52$, what is BC ?

Approach 2:
Approach 1:

$$
\begin{aligned}
3 \mathrm{x}+10 \mathrm{x} & =52 \\
13 \mathrm{x} & =52 \\
\mathrm{x} & =4
\end{aligned}
$$

$$
\text { therefore, } \mathrm{BC}=40
$$

$$
\begin{aligned}
& \frac{\mathrm{AB}}{\mathrm{BC}}=\frac{3}{10} \\
& \frac{52-\mathrm{x}}{\mathrm{x}}=\frac{3}{10} \\
& 520-10 \mathrm{x}=3 \mathrm{x} \\
& 520=13 \mathrm{x} \\
& \mathrm{x}=40
\end{aligned}
$$

Example: What is the ratio of x to y ?

$$
\frac{6}{3 x-5 y}=\frac{9}{6 x-8 y}
$$

$$
\begin{aligned}
& 36 \mathrm{x}-48 \mathrm{y}=27 \mathrm{x}-45 \mathrm{y} \\
& 3 \mathrm{x}=3 \mathrm{y} \\
& \frac{9 \mathrm{x}}{\mathrm{y}}=3 \quad \frac{\mathrm{x}}{\mathrm{y}}=\frac{1}{3} \quad 1: 3
\end{aligned}
$$

Example: Find X and Y

Step 1: Find Y (using Pythagorean Theorem)

$$
\begin{aligned}
5^{2}+\mathrm{Y}^{2} & =12^{2} \\
\mathrm{Y}^{2} & =119 \\
\mathrm{Y} & =\sqrt{119}
\end{aligned}
$$

Step 2: Use proportions to find X

> (Due to Angle-Angle, the
triangles are similar) triangles are similar)

$$
\begin{array}{cc}
\frac{10}{5}=\frac{7 \mathrm{X}}{\sqrt{119}} & 35 \mathrm{X}=109.09 \\
& \mathrm{X}=3.12
\end{array}
$$

Example: $\overline{\mathrm{BP}} \| \overline{\mathrm{TI}}$
$\overline{\mathrm{BI}}$ bisects angle I

Find $\overline{\mathrm{BT}}, \overline{\mathrm{RP}}$, and $\overline{\mathrm{BP}}$

Using Angle Bisector Theorem:

$$
\begin{aligned}
& \frac{28}{21}=\frac{\mathrm{BT}}{6} \\
& \overline{\mathrm{BT}}=8
\end{aligned}
$$

Using Side-Splitter Theorem:

$$
\begin{aligned}
\frac{6}{x} & =\frac{8}{21-x} \\
8 x & =126-6 x \\
x & =9 \\
\overline{R P} & =9
\end{aligned}
$$

Using Similar Triangles

$$
\frac{9}{\mathrm{BP}}=\frac{21}{28} \quad \frac{\text { "right" }}{\text { "bottom" }}
$$

$$
\overline{\mathrm{BP}}=12
$$

Example: $\quad \angle \mathrm{B}=\angle 2$
$\overline{\mathrm{AP}}=8$
$\overline{\mathrm{PM}}=5$

What is $\frac{\mathrm{AC}}{\mathrm{BC}}$?

(Large Triangle "flipped over")

Triangles AMP and ABC are similar (because of Angle-Angle)

Since the ratio of AP to PM is $8 / 5$,
the ratio of the corresponding segments AC to BC are also $8 / 5$

Questions- \rightarrow

I. Similarity Ratios: Surface Area and Volume

Each pair of solids are similar. Find the missing measurement.
A)
Solid \#1
Solid \#2

Surface Area	2 square meters	Surface Area	98 square meters
Volume	5 cubic meters	Volume	$?$

B)
Solid \#3
Solid \#4

Surface Area	1152 sq. feet
Volume	11,776 cubic feet

Surface Area	$?$
Volume	7,889 cubic feet

C)
Solid \#5

SA	$576 \mathrm{yds}^{2}$
V	$9216 \mathrm{yds}^{3}$

SA
V $\quad 18 \mathrm{yds}^{3}$
II. What is the ratio of the areas of region I to region II?
A)

B)

III. "Shadow Questions"

1) A 20 foot tree casts a 8 yard shadow.

How long is a shadow cast by a man 68 inches tall?
2) Jack is 6 feet tall. When standing near a 15 foot lamp post, his shadow is 4 feet. If he walks 2 feet further from the lamp post, how much will his shadow increase?

IV. Concepts

1) What is wrong with this diagram?

2) If (quadrilateral) $\mathrm{ABCD} \sim$ (quadrilateral) FGHI , which statement must be true?
a) $\angle \mathrm{A} \cong \angle \mathrm{G}$
b) $\angle \mathrm{C} \xlongequal{\stackrel{N}{=}} \angle \mathrm{H}$
c) $\overline{\mathrm{BC}} \xlongequal{\cong} \overline{\mathrm{GH}}$
d) $\overline{\mathrm{AB}} \stackrel{\mathrm{Ni}}{=} \overline{\mathrm{HI}}$
3) Is this diagram possible? Justify your answer.

V. Angle Bisector
4) $\angle \mathrm{VRT}^{N} \stackrel{\sim}{=} \angle \mathrm{TRS} \quad$ Coordinate R is $(11,12) \quad \overline{\mathrm{RV}}=28$

What is the coordinate of V ?

2) What is the coordinate of A ?

3) Find the length of $\overline{\mathrm{CD}}$:

ABC is a right triangle, where $\angle \mathrm{ABD} \stackrel{\cong}{=} \angle \mathrm{CBD}$
VI. More Topics
A) Always/Sometimes/Never

1) If one base angle in an isosceles triangle is congruent to a base angle in another isosceles triangle, then the triangles are similar.
2) If one angle in an isosceles triangle is congruent to an angle in another isosceles triangle, then the triangles are similar.
3) If ratio of 2 sides of polygon is $3: 4$, then ratio of perimeters is $5: 6$
4) If ratio of all sides of polygons is $3: 4$, then ratio of perimeters is $5: 6$
B) Proof

Given: Parallelogram PARL

$$
\angle 1 \cong \angle 2
$$

Prove: $(\mathrm{CL})(\mathrm{AT})=(\mathrm{DA})(\mathrm{LW})$

Statements	Reasons

C) Solve

$$
\begin{aligned}
\angle \mathrm{EYM} & =\angle \mathrm{I} \\
\overline{\mathrm{EM}} & =14 \\
\overline{\mathrm{MI}} & =6 \\
\overline{\mathrm{EY}} & =12
\end{aligned}
$$

What is the length of $\overline{\mathrm{YL}}$?

A)
Solid \#1

Surface Area	2 square meters
Volume	5 cubic meters

B)

Solid \#3

Surface Area	1152 sq. feet
Volume	11,776 cubic feet

C)
Solid \#5
SA
$576 \mathrm{yds}^{2}$
v
$9216 \mathrm{yds}^{3}$
II. What is the ratio of the areas of region I to region II?
A)

Solid \#2

Surface Area	98 square meters
Volume	1715 cubic meters

Solid \#4

Surface Area	882 sq feet
Volume	7,889 cubic feet

Step 1: Find the similarity ratio

$$
\begin{aligned}
& \frac{\mathrm{SA} 1}{\mathrm{SA} 2}=\frac{2}{98} \\
& \text { similarity ratio is } \frac{\sqrt{2}}{7 \sqrt{2}} \cdots \frac{1}{7}
\end{aligned}
$$

Step 2: Find ratio of volumes

$$
\frac{1^{3}}{7^{3}}=\frac{1}{343}
$$

Step 3: Apply ratio to solids

$$
\frac{1}{343}=\frac{5}{?} \quad \mathrm{~V}=1715 \text { meters }^{3}
$$

$$
\frac{\mathrm{V} 3}{\mathrm{~V} 4}=\frac{11776}{7889} \quad \frac{\sqrt[3]{11776}}{\sqrt[3]{7889}}=\frac{8}{7} \begin{gathered}
\text { similarity ratio } \\
\text { of } \# 3 \text { to } \# 4 \text { is } \\
8: 7
\end{gathered}
$$

$$
\begin{array}{ll}
\frac{\sqrt[3]{9216}}{\sqrt[3]{18}}=8 & \begin{array}{l}
\text { similarity ratio of S5:S6 is } 8: 1 \\
\text { so ratio of areas is } 64: 1
\end{array} \\
\frac{64}{1}=\frac{576}{\mathrm{~S} 6} & \begin{array}{l}
\text { surface area of } \\
\text { S6 is } 9
\end{array}
\end{array}
$$

Triangle II and Big triangle (I and II) are similar triangles...
(Angle - Angle)

Solid \#6
9 sq. yards
18 yds 3

$$
\frac{\mathrm{SA} 3}{\mathrm{SA} 4}=\frac{8^{2}}{7^{2}}=\frac{64}{49} \quad \text { ratio of the areas }
$$

$$
\frac{64}{49}=\frac{1152 \mathrm{sq} \mathrm{ft}}{\mathrm{SA}} \quad \mathrm{SA} \text { of } 3 \text { is } 882 \text { sq feet }
$$

Ratio is $15: 9$ or $5: 3$ therefore, area ratio is $5^{2}: 3^{2}$

III. "Shadow Questions"

1) A 20 foot tree casts a 8 yard shadow.

How long is a shadow cast by a man 68 inches tall?
Draw a diagram and convert the units!

Set up the ratios:
$\begin{aligned} & \text { tree } \\ & \text { shadow }\end{aligned} \frac{20^{\prime}}{24^{\prime}}=\frac{52 / 3^{\prime}}{\mathrm{X}} \quad \begin{aligned} & \text { man } \\ & \text { shadow }\end{aligned}$

$$
\begin{aligned}
& 20 \mathrm{X}=136 ' \\
& \mathrm{X}=6.8 \text { feet }
\end{aligned}
$$

2) Jack is 6 feet tall. When standing near a 15 foot lamp post, his shadow is 4 feet. If he walks 2 feet further from the lamp post, how much will his shadow increase?

Step 1: Determine proportion (to find distance from lamp post)

Step 2: Redraw diagram with Jack 2 feet further...

The shadow goes from 4 feet to $51 / 3$ feet....

$$
\text { So, it increases by } 1^{\prime} 4^{\prime \prime}
$$

IV. Concepts

1) What is wrong with this diagram?

According angle bisector theorem, $\quad \frac{17}{8}=\frac{x}{6}$

$$
x=12.75
$$

But, according to the pythagorean theorem,

$$
8^{2}+(\text { right side })^{2}=17^{2}
$$

the right side must equal 15 ..
but, it is $18.75 \ldots$.... (which is greater than the hypotenuse)

2) If (quadrilateral) $\mathrm{ABCD} \sim$ (quadrilateral) FGHI, which statement must be true?
a) $\angle \mathrm{A} \cong \angle \mathrm{G}$
b) $\angle \mathrm{C} \xlongequal{\cong} \angle \mathrm{H}$
c) $\overline{\mathrm{BC}} \xlongequal{\cong} \overline{\mathrm{GH}}$
d) $\overline{\mathrm{AB}} \stackrel{\pi}{=} \overline{\mathrm{HI}}$

3) Is this diagram possible? NO it is not...

Justify your answer.

V. Angle Bisector

1) $\angle \mathrm{VRT} \stackrel{N}{=} \angle \mathrm{TRS} \quad$ Coordinate R is $(11,12) \quad \overline{\mathrm{RV}}=28$

What is the coordinate of V ?

$$
\begin{aligned}
& \frac{\mathrm{RS}}{\mathrm{TS}}=\frac{\mathrm{RV}}{\mathrm{VT}} \\
& \frac{13}{8}=\frac{28}{\mathrm{VT}}
\end{aligned}
$$

Coordinate V is $(-19.23,0)$
2) What is the coordinate of A ?

3) Find the length of $\overline{\mathrm{CD}}$:

ABC is a right triangle, where $\angle \mathrm{ABD} \xlongequal{\cong} \angle \mathrm{CBD}$

$$
\begin{gathered}
\text { Pythagorean Theorem: } \quad \mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}^{2} \\
5^{2}+12^{2}=\mathrm{AC}^{2} \\
\mathrm{AC}=13 \\
\mathrm{AD}+\mathrm{DC}=\mathrm{AC}
\end{gathered}
$$

Angle Bisector Theorem: $\frac{A B}{A D}=\frac{B C}{C D}$

$$
\frac{5}{X}=\frac{12}{13-X}
$$

$$
\mathrm{CD}=9.176
$$

$$
65-5 \mathrm{X}=12 \mathrm{X}
$$

$$
65=17 \mathrm{X} \quad \mathrm{X}=3.824
$$

A) Always/Sometimes/Never

1) If one base angle in an isosceles triangle is congruent to a base angle in another isosceles triangle, then the triangles are similar.

ALWAYS

2) If one angle in an isosceles triangle is congruent to an angle in another isosceles triangle, then the triangles are similar.

SOMETIMES
3) If ratio of 2 sides of polygon is $3: 4$, then ratio of perimeters is $5: 6$ SOMETIMES (all the corresponding sides must be proportional!)

Statements	Reasons
1) $\triangle \mathrm{PARL}$	1) Given
2) $\angle 1 \stackrel{N}{=} \angle 2$	2) Given
3) $\angle \mathrm{A} \stackrel{\Omega}{=} \angle \mathrm{L}$	3) Definition of Parallelogram (opposite angles congruent)
4) $\triangle \mathrm{TAD} \leadsto \triangle \mathrm{WLC}$ 4) Angle-Angle triangle similarity 5) $\frac{\mathrm{CL}}{\mathrm{DA}}=\frac{\mathrm{LW}}{\mathrm{AT}}$ 5) CSSTP (Corresponding Sides of 6) $(\mathrm{CL})(\mathrm{AT})=(\mathrm{DA})(\mathrm{LW})$ 6) MEPT Means-Extremes Product Theorem	

C) Solve

$$
\begin{aligned}
\angle \mathrm{EYM} & =\angle \mathrm{I} \\
\overline{\mathrm{EM}} & =14 \\
\overline{\mathrm{MI}} & =6 \\
\overline{\mathrm{EY}} & =12
\end{aligned}
$$

What is the length of $\overline{\mathrm{YL}}$?

$$
\begin{aligned}
& \frac{20}{12}=\frac{\mathrm{EL}}{14} \\
& \mathrm{EL}=70 / 3 \\
& \text { therefore, } \mathrm{YL} \\
& \text { is } 70 / 3-36 / 3=34 / 3
\end{aligned}
$$

6) MEPT Means-Extremes Product Theorem

Thanks for visiting. (Hope it helps!)
If you have questions, suggestions, or requests, let us know.
Cheers

Also, find us at Facebook, Google+, Pinterest, TeachersPayTeachers, and TES

