SAT Practice Test 3

20 Multiple choice questions (and, detailed solutions)

Topics include Pythagorean Theorem, ratios, word problems, linear equations, radicals, and more.

Questions - -

(Try to answer in 25 minutes)

1) What is X ?

2) A vertical yardstick casts a 2 foot shadow.

A nearby tree casts a 20 foot shadow. How tall is the tree?
a) $62 / 3$ feet
b) 10 feet
c) 15 feet
d) 30 feet
e) 60 feet
3) Find the ratio of the area of the smaller figure to the larger figure.
a) $5: 2$
b) $2: 5$
c) $4: 25$
d) $100: 16$

e) $2: \sqrt{10}$
4) Given a square pyramid with a base perimeter of 40 and altitude 12 . What is the diagonal of the base?
a) $5 \sqrt{2}$
b) 8
c) $10 \sqrt{2}$
d) 13
e) 240
5) Jack traveled through D to get from F to B.

How much shorter is the direct route versus the route he took?
a) 5
b) 10
c) 15
d) 20
e) 25

6) A box has 50 A 's, 50 B 's, and 50 C 's.

How many ways can you choose 3 letters?
(Note: Order does not matter)
a) 3
b) 9
c) 10
d) 12
e) 27
7) The sum of the first 20 integers is 210 .

What is the sum of the first 40 integers?
a) 210^{2}
b) 420
c) 820
d) 840
e) 8400
8) In a restaurant, there are 12 booths that seat up to 4 people each. If 25 people are seated in the restaurant, and there are NO empty booths, what is the maximum number possible of filled booths?
a) 2
b) 3
c) 4
d) 5
e) 6
9) A wall is 8 feet high and 16 feet long.

We want to tile the wall with 4 inch $x 4$ inch square tiles.
How many tiles do we need to cover the rectangular wall?
(Assume there are no gaps between tiles and no broken tiles!)
a) 96
b) 256
c) 374
d) 512
e) 1152
10) Speedy drove 240 miles in 6 hours. If he drove 20 miles per hour faster, how many hours could he have saved?
a) $1 / 2$
b) 1
c) 2
d) $21 / 2$
e) 4
11) There are 2 bottles of catsup on the dining room table.

Bottle A is small and $1 / 2$ full. Bottle B is twice as large and $1 / 4$ full.
If you pour the remainder of Bottle A into Bottle B, how full will Bottle B be?
a) $1 / 4$
b) $3 / 8$
c) $1 / 2$
d) $5 / 8$
e) $3 / 4$
12) For triangle $\mathrm{ABC}, \overline{\mathrm{AB}}=\overline{\mathrm{BC}}$

Which statement MUST be true?

a) $\angle \mathrm{ABC} \stackrel{\sim}{=} \angle \mathrm{ACB}$
b) $\angle \mathrm{ABC} \neq \angle \mathrm{ACB}$
c) $\overline{\mathrm{AC}} \neq \overline{\mathrm{AB}}$
d) $\overline{\mathrm{AC}}=\overline{\mathrm{AB}}$
e) $\angle \mathrm{BCA} \cong \angle \mathrm{CAB}$
13) $\mathrm{C}=3 \mathrm{~A}-2 \mathrm{~B}-5$

If A increases by 2 and B decreases by 3 , then C :
a) remains the same
b) decreases by 1
c) increases by 6
d) decreases by 5
e) increases by 12
14) What is the sum of the y-intercept and the slope of $4 x-8 y=6$?
a) -2
b) $-1 / 2$
c) $-1 / 4$
d) 2
e) 6
15) What is the equation of a line perpendicular to $x=2$ and goes through ($-1,4$)?
a) $y=2$
b) $x=-1$
c) $y=4$
d) $x=4$
e) $y=-1$
16) Which equation creates an infinite number of solutions when solved for a system with $y=8 x-9$?
a) $y=9 x-8$
b) $3 y-24 x=-36$
c) $4 y+24 x=-27$
d) $4 y-32 x=-36$
e) $2 y+16 x=-18$
17) If you shifted $y=3 x+6$ five units to the right, what would the new linear equation be?
a) $y=3 x+11$
b) $y=8 x+6$
c) $y=3 x+1$
d) $y=3 x-9$
e) $y=8 x+11$
18) $\sqrt{45}+2 \sqrt{20}+\frac{1}{2} \sqrt{500}=$
a) $12 \sqrt{5}$
b) $\frac{5}{2} / \sqrt{565}$
c) $67 \sqrt{5}$
d) $12 \sqrt{15}$
e) $30 \sqrt{3}$
19) Simplify $\frac{5 \sqrt{6}}{2 \sqrt{3}}$
a) 5
b) $5 / 2$
c) $5 \sqrt{2}$
d) $\frac{5 \sqrt{2}}{3}$
e) $\frac{5 \sqrt{2}}{2}$
20) Solve for x : $x^{2}-3 x=10 x$
a) $\sqrt{13}$
b) 13
c) 0,13
d) 7
e) $-7,7$

Solutions - \rightarrow

1) What is X ?
a) $\sqrt{5}$
b) 5
c) $\sqrt{7}$
d) 7
e) 11

$$
\begin{gathered}
a^{2}+b^{2}=c^{2} \\
(\sqrt{3})^{2}+(\sqrt{4})^{2}=c^{2} \\
7=c^{2} \\
c=\sqrt{7}
\end{gathered}
$$

This is not a 3-4-5 Pythagorean Triple!

SAT Practice Test 3

SOLUTIONS

2) A vertical yardstick casts a 2 foot shadow.

A nearby tree casts a 20 foot shadow. How tall is the tree?
a) $62 / 3$ feet
b) 10 feet
c) 15 feet
d) 30 feet
e) 60 feet
 yardstick is 3 feet... $\begin{aligned} & 3 \text { feet } \\ & 2 \text { feet }\end{aligned} \quad \frac{3 \text { feet }}{2 \text { feet }}=\frac{\text { tree }}{20 \text { feet }}$
tree is 30 feet
3) Find the ratio of the area of the smaller figure to the larger figure.
a) $5: 2$
b) $2: 5$
c) $4: 25$
d) $100: 16$
e) $2: / \sqrt{10}$

Since ratio of sides is $2: 5$, then the ratio of the areas is

$$
2^{2}: 5^{2}
$$

4) Given a square pyramid with a base perimeter of 40 and altitude 12 . What is the diagonal of the base?
a) $5 \sqrt{2}$
b) 8
c) $10 \sqrt{2}$
d) 13
e) 240

5) Jack traveled through D to get from F to B.

How much shorter is the direct route versus the route he took?
a) 5
b) 10
c) 15
d) 20
e) 25

The distance from F to B (directly) is 25 miles...
Since the long way is 35 miles, the short-cut is 10 miles less!
"

6) A box has 50 A 's, 50 B 's, and 50 C 's.

3 A's
3 B's
3 C 's
a) 3
b) 9
c) 10
d) 12
e) 27
7) The sum of the first 20 integers is 210 . What is the sum of the first 40 integers?
a) 210^{2}
b) 420
c) 820
d) 840
e) 8400
method 1 :
method 2 :

2 A's 1 B $\quad 1 \mathrm{~A} 1 \mathrm{~B} \quad 1 \mathrm{C}$
2 A's 1 C

2 B's 1 A Ten different outcomes...
2 B's 1 C

2 C's 1 A
2 C's 1 B

1-20: 210

21-40: $20 \quad 20 \quad 20 \quad 20 \quad 20 \ldots .20 \quad 20 \quad 400 \quad(20 \times 20)$

| 1 | 2 | 3 | 4 | 5 | \ldots | 19 | 20 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 210 \quad$ (sum of $1-20$)

8) In a restaurant, there are 12 booths that seat up to 4 people each. If 25 people are seated in the restaurant, and there are NO empty booths, what is the maximum number possible of filled booths?
a) 2

b) 3
d) 5
e) 6

9) A wall is 8 feet high and 16 feet long.

We want to tile the wall with 4 inch x 4 inch square tiles.
How many tiles do we need to cover the rectangular wall?
(Assume there are no gaps between tiles and no broken tiles!)
a) 96
b) 256
c) 374
d) 512
e) 1152

First, convert the units from feet to inches...

$$
\begin{aligned}
& 8 \text { feet }=96 \text { inches } \\
& 16 \text { feet }=192 \text { inches }
\end{aligned}
$$

Then, determine the area of the wall (in square inches)....
96 inches $\times 192$ inches $=18432$ square inches...
Since each tile is 16 square inches, we'll need $18,432 / 16=1152$ tiles
10) Speedy drove 240 miles in 6 hours. If he drove 20 miles per hour faster, how many hours could he have saved?
a) $1 / 2$
b) 1

c) 2

d) $21 / 2$
distance $=$ rate x time
240 miles $=$ rate $\times 6$ hours
rate $=40 \mathrm{mph} .$.

$$
\begin{aligned}
& 20 \mathrm{mph} \text { faster }---->\text { rate }=60 \mathrm{mph} \\
& \text { distance }=\text { rate } \mathrm{x} \text { time } \\
& 240 \text { miles }=60 \mathrm{mph} \times \text { time }
\end{aligned}
$$

6 hours to 4 hours is saving 2 hours

If you pour the remainder of Bottle A into Bottle B, how full will Bottle B be?
a) $1 / 4$
b) $3 / 8$
c) $1 / 2$
d) $5 / 8$
e) $3 / 4$

For ease, we'll quantify both bottles...
Assume bottle A is 16 oz and bottle B is $32 \mathrm{oz} .$.

Since bottle A is $1 / 2$ full, it contains $8 \mathrm{oz} \ldots$

When you pour the remainder of A into B, you'll have 16 total oz in bottle B...
$160 z$ out of $320 z$ is $1 / 2$ full!
bottle B is $1 / 4$ full, so it contains 8 oz ..
12) For triangle $\mathrm{ABC}, \overline{\mathrm{AB}}=\overline{\mathrm{BC}}$

Which statement MUST be true?

a) $\angle \mathrm{ABC} \stackrel{\sim}{=} \angle \mathrm{ACB}$
b) $\angle \mathrm{ABC} \neq \neq \angle \mathrm{ACB}$
c) $\overline{\mathrm{AC}} \neq \overline{\mathrm{AB}}$
d) $\overline{\mathrm{AC}}=\overline{\mathrm{AB}}$
e) $\angle \mathrm{BCA} \cong \angle \mathrm{CAB}$

Note: The shape of the triangle in the diagram isn't drawn to scale...

> If triangle is equilateral, then $A C=A B=B C$.
> If triangle is isosceles, then $A C \neq A B$

Therefore, the ONLY statement that MUST be true is e)
(If sides are congruent, then their opposite angles are congruent)
13) $\mathrm{C}=3 \mathrm{~A}-2 \mathrm{~B}-5$

If A increases by 2 and B decreases by 3 , then C :
general approach:
$C=3 A-2 B-5$
increase A by 2 ; decrease B by 3 :

$$
\begin{aligned}
& 3(\mathrm{~A}+2)-2(\mathrm{~B}-3)-5 \\
& 3 \mathrm{~A}+6-2 \mathrm{~B}+6-5
\end{aligned}
$$

then, substitution: $C+12$
try a number:
let $\mathrm{A}=3$ and $\mathrm{B}=4$
$\mathrm{C}=3(3)-2(4)-5=-4$
then, let $\mathrm{A}=5$ and $\mathrm{B}=1$
$\mathrm{C}=3(5)-2(1)-5=8$
an increase of 12 !
14) What is the sum of the y-intercept and the slope of $4 x-8 y=6$?
a) -2
b) $-1 / 2$
c) $-1 / 4$
d) $\quad 2$
The y-intercept occurs when $x=0 \ldots$
y-intercept is $(0,-3 / 4)$

then, to find the slope: | $-8 y$ | $=-4 x+6$ |
| ---: | :--- |
| y | $=(1 / 2) x-3 / 4$ |
| slope is $1 / 2$ | |

15) What is the equation of a line perpendicular to $x=2$ and goes through $(-1,4)$?
a) $y=2$
b) $x=-1$
c) $y=4$
d) $x=4$
e) $y=-1$

16) Which equation creates an infinite number of solutions when solved for a system with $\mathrm{y}=8 \mathrm{x}-9$?
a) $y=9 x-8 \quad$ slope is 9 NO
b) $3 y-24 x=-36$
slope is 8 , but intercept is -12 NO
SOLUTIONS
c) $4 y+24 x=-27$
d) $4 y-32 x=-36$
e) $2 y+16 x=-18$
slope is -6 NO
slope is 8 , intercept is -9 YES (this is the same equation)
$y+8 x=-9 \longrightarrow y=-8 x-9$ close, but NO
17) If you shifted $y=3 x+6$ five units to the right, what would the new linear equation be?
a) $y=3 x+11$
Since the entire line is shifted, the slope is the SAME...
slope is 3
b) $y=8 x+6$
c) $y=3 x+1$
d) $y=3 x-9$
If the line is shifted 5 units to the right, then presumably, the
e) $y=8 x+11$ original x -intercept is $(-2,0) \ldots$ Then, new x -intercept is $(3,0)$
therefore, equation is $y-0=3(x-3)$ or $y=3 x-9$
18) $\sqrt{45}+2 \sqrt{20}+\frac{1}{2} \sqrt{500}=$

$$
\begin{aligned}
& \sqrt{5 \cdot 9}+2 \sqrt{5 \cdot 4}+\frac{1}{2} \sqrt{5 \cdot 100} \\
& \sqrt{5} \cdot \sqrt{9}+2 \cdot \sqrt{5} \cdot \sqrt{4}+\frac{1}{2} \cdot \sqrt{5} \cdot \sqrt{100} \\
& \sqrt{5} \cdot 3+2 \cdot \sqrt{5} \cdot 2+\frac{1}{2} \cdot \sqrt{5} \cdot 10 \\
& 3 \sqrt{5}+4 \sqrt{5}+5 \sqrt{5} \\
& 12 \sqrt{5}
\end{aligned}
$$

a) $12 \sqrt{5}$
c) $67 \sqrt{5}$
d) $12 \sqrt{15}$
19) Simplify $\frac{5 \sqrt{6}}{2 \sqrt{3}}$
a) 5
b) $5 / 2$
c) $5 \sqrt{2}$
d) $\frac{5 \sqrt{2}}{3}$
$\frac{5 \sqrt{6}}{2 \sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{5 \sqrt{18}}{2 \sqrt{9}}=$
e) $\frac{5 \sqrt{2}}{2}$

$$
\frac{5 \sqrt{2 \cdot 9}}{2 \cdot 3}=\frac{15 \sqrt{2}}{6}=\frac{5 \sqrt{2}}{2}
$$

20) Solve for $x: \quad x^{2}-3 x=10 x$
a) $\sqrt{13}$
b) 13
c) 0,13
d) 7
GCF
(DO NOT divide $\quad x(x-13)=0$
by x)

$$
\begin{aligned}
& x(x-13)=0 \\
& x=0 \text { and } 13
\end{aligned}
$$ Collect "like terms" $x^{2}-13 x=0$

1) When $x=4$ and $y=-3$, the value of $2 x^{2}-2 y$ is
a) 10
b) 22
c) 26
d) 38
e) 54
2) A car gets 30 miles p how much will it cost
a) $\$ 177$
b) $\$ 269$
c) $\$ 299$
d) $\$ 508$
e) $\$ 538$

200 SAT/ACT Math

Practice Questions
 (and, Solutions)

3) Find the greatest common factor of 36,84 , and 132.
a) 2
b) 4

Available at Mathplane.com. Just contact us or visit the Travel Log section to order the complete packet. (\$5 for .pdf or .docx format)

Proceeds will go to site maintenance and improvement (and treats for Oscar the dog!).

Thanks for visiting!

Also at Facebook, Google+, TeachersPayTeachers, Pinterest

