Trigonometry: Polar and Rectangular Equations

Notes, Examples, and Quiz (with solutions)

Topics include converting from polar to rectangular forms, graphing conics, eccentricity, directrix, trig functions, and more.

Convert the polar equation into rectangular form

Example:

$$
\begin{array}{rrr}
\mathrm{r}=\frac{5}{3 \cos \ominus+4 \sin \ominus} & \text { cross multiply } & 3 \mathrm{rcos} \ominus+4 \mathrm{r} \sin \ominus=5 \\
3 \mathrm{x}+4 \mathrm{y}=5
\end{array}
$$

Example: $\quad \mathrm{r}+\mathrm{r} \cos \ominus=4$

$$
\begin{aligned}
& \text { one approach is to convert the terms first } \\
& \sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}+\mathrm{y}=4 \\
& \sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}=4-\mathrm{y}
\end{aligned}
$$

square both sides...

$$
\begin{aligned}
x^{2}+y^{2} & =16-8 y+y^{2} \\
x^{2} & =16-8 y
\end{aligned}
$$

$$
\text { Parabola!! } \quad x^{2}=-8(y-2)
$$

Example: 7r $=\mathrm{rsec}^{2} \ominus \quad$ multiply both sides by $\cos ^{2} \ominus$

$$
\begin{aligned}
7 \mathrm{r} \cos ^{2} \theta & =\mathrm{rsec}^{2} \theta \cdot \cos ^{2} \theta \\
7 \mathrm{r} \cos ^{2} \theta & =\mathrm{r}
\end{aligned}
$$

multiply both sides by r

$$
7 \mathrm{r}^{2} \cos ^{2} \theta=\mathrm{r}^{2}
$$

Example: $\mathrm{r}=2 \cos \Theta+6 \sin \ominus$

$$
\begin{aligned}
r & =2 \frac{x}{r}+6 \frac{y}{r} \\
r^{2} & =2 x+6 y \\
x^{2}+y^{2} & =2 x+6 y
\end{aligned}
$$

Circle!!

$$
\begin{gathered}
x^{2}-2 x+1+y^{2}-6 y+9=0+1+9 \\
(x-1)^{2}+(y-3)^{2}=10
\end{gathered}
$$

This is a double line...
convert...

$$
7 x^{2}=x^{2}+y^{2}
$$

$$
y^{2}=6 x^{2}
$$

Convert from rectangular form into polar $\quad r=\ldots .$.

Example: $5 \mathrm{x}^{2}+5 \mathrm{y}^{2}=20 \mathrm{x}+10 \mathrm{y}$

$$
\begin{aligned}
& 5 r^{2} \cos ^{2} \ominus+5 r^{2} \sin ^{2} \theta=20 r \cos \theta+10 r \sin \theta \\
& \text { factor left side and apply trig identity } \\
& 5 r^{2}\left(\cos ^{2} \Theta+\sin ^{2} \ominus\right)=20 r \cos \Theta+10 r \sin \Theta \\
& 5 \mathrm{r}^{2}=\mathrm{r}(20 \cos \ominus+10 \sin \ominus) \\
& \mathrm{r}=4 \cos \theta+2 \sin \theta
\end{aligned}
$$

Example: $\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)^{3}=4 \mathrm{x}^{2} \mathrm{y}^{2}$

$$
\begin{aligned}
\left(r^{2}\right)^{3} & =4(r \cos \ominus)^{2}(r \sin \theta)^{2} \\
r^{6} & =4 r^{4} \sin ^{2} \Theta \cos ^{2} \Theta \\
r^{2} & =4 \sin ^{2} \Theta \cos ^{2} \Theta \\
r & =2 \sin \ominus \cos \ominus \\
r & =\sin 2 \Theta
\end{aligned}
$$

Example: $\mathrm{y}=\frac{2}{7} \mathrm{x}+9$

$$
\mathrm{r} \sin \theta=\frac{2}{7} \mathrm{r} \cos \theta+9
$$

collect r's to one side..

$$
\mathrm{r} \sin \ominus-\frac{2}{7} \mathrm{rcos} \ominus=9
$$

$$
r\left(\sin \ominus-\frac{2}{7} \cos \ominus\right)=9
$$

$r=\frac{9}{\sin \theta-\frac{2}{7} \cos \theta} \quad$ multiply right side by $7 / 7$
$r=\frac{63}{7 \sin \ominus-2 \cos \theta}$

Example: $\mathrm{x}^{2}+\mathrm{y}^{2}=3 \mathrm{x}+7 \mathrm{y}$ into polar form

$$
\begin{aligned}
\mathrm{r}^{2} & =3 \mathrm{r} \cos \Theta+7 \mathrm{r} \sin \ominus \\
\mathrm{r}^{2} & =\mathrm{r}(3 \cos \Theta+7 \sin \Theta) \\
\mathrm{r} & =(3 \cos \Theta+7 \sin \Theta)
\end{aligned}
$$

Example: Convert $\mathrm{r}^{2}=\sin 2 \ominus$ into rectangular coordinates

$$
\begin{aligned}
& x^{2}+y^{2}=2 \sin \ominus \cos \ominus \\
& x^{2}+y^{2}=2\left(\frac{x}{r}\right)\left(\frac{y}{r}\right)
\end{aligned}
$$

$$
x^{2}+y^{2}=\frac{2 x y}{x^{2}+y^{2}}
$$

$$
x^{4}+2 x^{2} y^{2}+y^{4}=2 x y
$$

cross-multiply

Example: Convert $4 x^{2}-9 y^{2}=1$ into polar coordinates

Identifying Polar Conics

Examples:

Sketch the following polar conic $\quad r=\frac{8}{4+2 \cos \ominus}$
Using POLAR form
rewrite in standard form (by dividing by 4)
$r=\frac{2}{1+(1 / 2) \cos \ominus}$
$\mathrm{e}=1 / 2$
since ep $=2, \mathrm{p}=4$

$$
r=\frac{\mathrm{ep}}{1+\mathrm{ecos} \theta}
$$

$\mathrm{e}=$ eccentricity
p is distance between focus and directrix
(and, focus is on the pole)

- since $\mathrm{e}<1$, it is an ellipse
- since the trig function is $\cos \theta$, it is a horizontal ellipse
- and, because it is positive, the right focus is on the pole...

$\left(2,270^{\circ}\right)$

mathplane.com

Using RECTANGULAR form

$r=\frac{8}{4+\frac{2 x}{r}}$	$\begin{array}{c}x=r \cos \ominus \\ x^{2}+y^{2}=r^{2}\end{array}$
$8=4 r+2 x$	
$8-2 x$	$=4 r$
$64-32 x+4 x^{2}=16 r^{2}$	cos $\ominus=\frac{x}{r}$
cross multiply	

$$
64-32 x+4 x^{2}=16 r^{2}
$$

$$
64-32 x+4 x^{2}=16 x^{2}+16 y^{2}
$$

$$
12 x^{2}+16 y^{2}+32 x=64
$$

$$
3 x^{2}+4 y^{2}+8 x=16
$$

ellipse..... Then, complete the square to put into standard form...

$$
\begin{gathered}
3\left(x^{2}+\frac{8}{3} x+\frac{16}{9}\right)+4 y^{2}=16+\frac{16}{3} \\
\frac{3\left(x+\frac{4}{3}\right)^{2}+4 y^{2}=\frac{64}{3}}{\frac{9\left(x+\frac{4}{3}\right)^{2}}{64}+\frac{3 y^{2}}{16}=1} \\
\text { center: }\left(-\frac{4}{3}, 0\right)
\end{gathered}
$$

$$
\begin{aligned}
& \mathrm{a}^{2}=\frac{64}{9} \quad \mathrm{~b}^{2}=\frac{16}{3} \\
& \mathrm{c}^{2}=\mathrm{a}^{2}-\mathrm{b}^{2}=\frac{16}{9}
\end{aligned}
$$

$\mathrm{a}=\frac{8}{3} \quad$ vertices: $\left(\frac{4}{3}, 0\right) \quad\left(-\frac{12}{3}, 0\right)$
$\mathrm{b}=\frac{4}{\sqrt{3}} \quad$ co-vertices: $\quad\left(-\frac{4}{3}, \frac{4}{\sqrt{3}}\right) \quad\left(-\frac{4}{3}, \frac{-4}{\sqrt{3}}\right)$
$(-1.33,2.31) \quad(-1.33,-2.31)$
$\mathrm{c}=\frac{4}{3} \quad$ foci: $\quad(0,0) \quad\left(-\frac{8}{3}, 0\right)$
directrix $=\frac{\mathrm{a}^{2}}{\mathrm{c}}=\frac{64 / 9}{4 / 3}=\frac{16}{3}$
so, 5.33 to the right of the center $\quad \mathrm{x}=4$ and, 5.33 to the left of the center... $\quad \begin{aligned} & x=-20 / 3\end{aligned}$

Sketch the following polar conic $r=\frac{12}{4+8 \cos \ominus}$

Using POLAR form

rewrite in standard polar form (by dividing by 4)

$$
r=\frac{3}{1+2 \cos \ominus}
$$

$$
\mathrm{e}=2
$$

since $\mathrm{ep}=3, \mathrm{p}=\frac{3}{2}$

- since $\mathrm{e}>1$, it is a hyperbola
- since the trig function is $\cos \theta$, it is a horizontal hyperbola
- and, because it is positive, the left focus is on the pole

$$
\text { and, the left (vertical) directrix is } \frac{3}{2} \text { units from focus... }
$$

***When $\theta=120^{\circ}$ or 240°, the function is undefined!
(those are the asymptotes...)
and, the asymptotes will cross at $\left(2,0^{\circ}\right)$ because 2 is midpoint of 1 and $3 \ldots$

Using RECTANGULAR form

$$
\text { Note: the asymptotes have a slope of } \frac{\sqrt{3}}{1} \text { and }-\frac{\sqrt{3}}{1}
$$

$$
\tan ^{-1}(\sqrt{3})=60^{\circ} 240^{\circ} \quad \tan ^{-1}(-\sqrt{3})=120^{\circ}
$$

$$
\begin{aligned}
& r=\frac{12}{4+\frac{8}{r}} \\
& 12=4 r+8 x \\
& r=3-2 x \\
& r^{2}=9-12 x+4 x^{2} \\
& x^{2}+y^{2}=9-12 x+4 x^{2} \\
& 3 x^{2}-12 x-y^{2}=-9 \\
& 3\left(x^{2}-4 x+4\right)-y^{2}=-9+12 \\
& 3(x-2)^{2}-y^{2}=3 \\
& \frac{(x-2)^{2}}{1}-\frac{y^{2}}{3}=1 \\
& \mathrm{a}^{2}=1 \quad \mathrm{~b}^{2}=3 \quad \mathrm{c}^{2}=4 \\
& \text { Horizontal hyperbola } \\
& \text { center: }(2,0) \\
& \mathrm{c}=2 \quad \text { foci: }(0,0) \text { and }(4,0) \\
& \mathrm{a}=1 \quad \text { vertices: }(1,0) \text { and }(3,0) \\
& \mathrm{b}=\sqrt{3} \text { co-vertices: }(2, \sqrt{3}) \text { and }(2,-\sqrt{3})
\end{aligned}
$$

Using POLAR form

$$
r=\frac{7 / 3}{1-\sin \ominus}
$$

plotting 3 easy points...
(undefined at 90°)

$$
\mathrm{r}=\frac{\mathrm{ep}}{1-\mathrm{esin} \ominus}
$$

eccentricity $(\mathrm{e})=1$
distance between
focus and directrix (p) = 7/3

- Since the coefficient of the trig function is 1 , it is a parabola...

Note: there is a slight difference between " p " in polar form
and
" p " in rectangular form!
polar " p " is distance from directrix to focus
rectangular " p " is distance from vertex to focus

- Since it is $\sin \ominus$, it is a vertical parabola...
- Since it is Negative sine, it opens upward (directrix is below the focus)

Using RECTANGULAR form

$$
\begin{gathered}
r=\frac{7}{3-3\left(\frac{y}{r}\right)} \\
\text { cross multiply } \\
3 r-3 y=7 \\
3\left(\sqrt{\left.x^{2}+y^{2}\right)}-3 y=y^{2}=r^{2}\right. \\
y=r \sin \ominus
\end{gathered} x_{3\left(\sqrt{x^{2}+y^{2}}\right)=3 y+7}^{9 x^{2}+9 y^{2}=9 y^{2}+42 y+49} \begin{gathered}
9 x^{2}=42 y+49 \\
p=\frac{9}{42} x^{2}-\frac{7}{6} \\
3 a \\
3
\end{gathered}
$$

vertex: $(0,-7 / 6)$ directrix: $y=-7 / 3$ focus: $(0,0)$

For the following polar equation, $\quad \mathrm{r}=\frac{10}{10+5 \sin \ominus}$
a) identify the conic
b) find the focus/foci, directrix/directrices, center, and vertex/vertices
c) convert to rectangular form
d) compare the graphs
conic opening up/down

$$
\mathrm{r}=\frac{e p}{1+e \sin \ominus}
$$

First, change to standard form.

$$
\mathrm{r}=\frac{1}{1+\frac{1}{2} \sin \theta}
$$

$$
\text { eccentricity } e=\frac{1}{2}
$$

$$
\text { since } 0<e<1 \text {, it is an ELLIPSE }
$$

and, since it is sine, it is a VERTICAL Ellipse

We know one focus is on the pole. $(0,0)$
since $e p=1$ and $e=1 / 2, p=2$
since the vertices are

$$
(2 / 3,90) \text { and }(2,270)
$$

the center is midpoint $(2 / 3,270)$ or $(-1 / 3,90)$
then, from the center, we can easily find the other focus, $(4 / 3,270)$

And, we can see directrix is $\mathrm{y}=2 \Rightarrow \mathrm{r} \sin \Theta=2$

$$
\begin{aligned}
& \text { (distance from focus } \\
& \text { to directrix }=p \text {) } \quad \mathrm{r}=\frac{2}{\sin \Theta}
\end{aligned}
$$

since 2 above the focus at the pole,
we can go 2 below the other focus.... the other directrix is $\mathrm{y}=-10 / 3 \leadsto \mathrm{r}=\frac{-10}{3 \sin \Theta}$

$$
\begin{array}{ll}
r=\frac{10}{10+5 \sin \ominus} \quad & 10 r+5 r \sin \theta=10 \\
10 \sqrt{x^{2}+y^{2}}+5 y=10 \\
10 \sqrt{x^{2}+y^{2}}=10-5 y \\
100\left(x^{2}+y^{2}\right)=100-100 y+25 y^{2} \\
4 x^{2}+4 y^{2}=4-4 y+y^{2} \\
4 x^{2}+3 y^{2}+4 y=4 \\
4 x^{2}+3\left(y^{2}+\frac{4}{3} y+\frac{4}{9}\right)=4+\frac{4}{3} \\
4 x^{2}+3\left(y+\frac{2}{3}\right)^{2}=\frac{16}{3} \\
& \frac{3 x^{2}}{4}+\frac{9\left(y+\frac{2}{3}\right)^{2}}{16}=1
\end{array}
$$

directrix is $\frac{\mathrm{a}}{e}$ or $\frac{\mathrm{a}^{2}}{\mathrm{c}}$

$$
\begin{aligned}
& \mathrm{a}=\frac{4}{3} \\
& \mathrm{~b}=\frac{2}{\sqrt{3}} \\
& \mathrm{c}=\sqrt{\frac{16}{9}-\frac{4}{3}}=\frac{\mathrm{a}^{2}}{\mathrm{c}}=\frac{\left(\frac{4}{3}\right)^{2}}{\frac{2}{3}}=\frac{8}{3} \\
& \quad \text { since center is }(0,-2 / 3), \text { the directrix is } \mathrm{y}=2
\end{aligned}
$$

For the following polar equation, $\quad r=\frac{24}{4+8 \cos \ominus}$
a) identify the conic
conic opening left/right
$\mathrm{r}=\frac{e p}{1+e \cos \bigcirc}$
b) find the focus/foci, directrix/directrices, center, and vertex/vertices
c) convert to rectangular form
d) compare the graphs

First, we'll rewrite in standard form...	$e=2$
$\mathrm{r}=\frac{6}{1+2 \cos \ominus}$	$p=3$
	since $e=2>0$
HYPERBOLA...	

and, since it is cosine, the hyperbola is HORIZONTAL

One focus is at the pole $(0,0)$
vertices are at $(2,0)$ and $\left(-6,180^{\circ}\right)$
the midpoint center would be at $(4,0)$ or $\left(-4,180^{\circ}\right)$
so, the other focus is at $(8,0)$
$r=\frac{24}{4+8 \cos \theta}$
$4 r+8 r \cos \Theta=24$
$4 \sqrt{x^{2}+y^{2}}+8 x=24$
$4 \sqrt{x^{2}+y^{2}}=24-8 x$
$\sqrt{x^{2}+y^{2}}=6-2 x$

$$
x^{2}+y^{2}=36-24 x+4 x^{2}
$$

$$
3 x^{2}-y^{2}-24 x=-36
$$

$$
3\left(x^{2}-8 x+16\right)-y^{2}=-36+48
$$

$$
3(x-4)^{2}-y^{2}=12
$$

$$
\frac{(x-4)^{2}}{4}-\frac{y^{2}}{12}=1
$$

For the following polar equation, $\quad r=\frac{7}{3+3 \sin \ominus}$
a) identify the conic
b) find the focus/foci, directrix/directrices, center, and vertex/vertices
c) convert to rectangular form
d) compare the graphs

First, change to standard form.

$$
\mathrm{r}=\frac{7 / 3}{1+1 \sin \Theta}
$$

$$
\text { eccentricity } e=1
$$

it is a PARABOLA
and, since it is sine, it is a VERTICAL parabola

We know the focus is on the pole $(0,0)$
since $e p=7 / 3$, we know $p=7 / 3$

The vertex is $(7 / 6,90)$
Then, using the center and focus, we can find the directrix

$$
\begin{aligned}
y=7 / 3 & \leadsto r \sin \theta=7 / 3 \\
& r=\frac{7 / 3}{\sin \theta} \text { or } \quad \frac{7}{3 \sin \Theta}
\end{aligned}
$$

$$
r=\frac{7}{3+3 \sin \ominus} \quad \begin{aligned}
& 3 r+3 r \sin \Theta=7 \\
& 3 \sqrt{x^{2}+y^{2}}+3 y=7 \\
& 3 \sqrt{x^{2}+y^{2}}=7-3 y \\
& 9\left(x^{2}+y^{2}\right)=49-42 y+9 y^{2} \\
& 9 x^{2}+9 y^{2}=49-42 y+9 y^{2} \\
& 9 x^{2}=49-42 y \\
&-9 x^{2}=42 y-49 \\
& y=\frac{49}{42}-\frac{9 x^{2}}{42} \\
& y=-\frac{3}{14} x^{2}+\frac{7}{6}
\end{aligned}
$$

vertex: $(0,7 / 6)$

$$
\mathrm{a}=\frac{1}{4 \mathrm{p}} \Longleftrightarrow-\frac{3}{14}=\frac{1}{4 \mathrm{p}}
$$

$$
p=-7 / 6
$$

focus: $(0,0) \quad$
directrix: $y=7 / 3$
conic opening up/down

$$
\mathrm{r}=\frac{e p}{1+e \sin \ominus}
$$

270

r	Θ
$7 / 3$	0
$7 / 6$	90
$7 / 3$	180
undefined	270

Quick Quiz- \rightarrow
A) Express $\left(3, \frac{5 \pi}{6}\right)$ where $\mathrm{r}<0$ and $-2 \pi<\ominus<0$

$$
\text { where } r>0 \text { and }-2 \pi<\theta<0
$$

$$
\text { where } \mathrm{r}<0 \text { and } 0<\theta<2 \pi
$$

B) On the polar graph, label the following coordinates:

$$
\begin{aligned}
& \mathrm{A}=\left(2, \frac{2 \pi}{3}\right) \\
& \mathrm{B}=\left(-4, \frac{\pi}{4}\right) \\
& \mathrm{C}=\left(0, \frac{\pi}{2}\right) \\
& \mathrm{D}=(3,0) \\
& \mathrm{E}=\left(-1, \frac{-5 \pi}{3}\right)
\end{aligned}
$$

$$
\mathrm{G}=\left(3,90^{\circ}\right)
$$

$$
\mathrm{H}=\left(-2,-150^{\circ}\right)
$$

$$
\mathrm{I}=\left(4,390^{\circ}\right)
$$

$$
\mathrm{J}=\left(-1,405^{\circ}\right)
$$

$$
\mathrm{K}=\left(0,60^{\circ}\right)
$$

where $\mathrm{r}<0$ and $-360^{\circ}<\theta<0^{\circ}$
where $\mathrm{r}<0$ and $0^{\circ}<\theta<360^{\circ}$
Express $\left(6,225^{\circ}\right)$ where $\mathrm{r}>0$ and $-360^{\circ}<\theta<0^{\circ}$
$1<0$ and $0<2$

1) Convert to polar coordinates. Give 2 answers where $0 \leq \ominus<2 \pi$
a) $(-5,5 \sqrt{3})$
b) $(0,7)$
c) $(10,-24)$
2) Convert to rectangular coordinates
a) $\ominus=\frac{5 \pi}{6}$
b) $r=\frac{1}{3 \cos \ominus+8 \sin \ominus}$
3) Convert $4 x^{2}+y^{2}=1$ into polar coordinates
4) Convert $r^{2}=\cos 2 \Theta$ into rectangular coordinates
5) Convert the point $(-4,5)$ into polar coordinates.

Then, write the equation of a circle that passes through that point (in polar form)
6) Convert $x y=5$ into polar coordinates Sketch the graphs and compare...

7) $\mathrm{r}=\frac{2}{1-\cos \ominus} \quad \begin{aligned} & \text { Convert to rectangular coordinates. } \\ & \text { Then, graph each equation to confirm }\end{aligned}$

8) $\mathrm{r}=\frac{1}{3-\cos } \quad$ Convert to rectangular coordinates. Then, graph each equation to confirm.

Polar/Rectangular Coordinates

$r=\frac{2}{1-\cos \theta}$

\ominus							\cdot	\cdots	
r									

$r=\frac{1}{3-\cos \ominus}$

1) $r=1$
$\mathrm{r}=1+\cos \ominus$

2) $r=\sin \ominus$
$\mathrm{r}=1+2 \sin \ominus$

3) $r=1+\sin \ominus$
$\mathrm{r}=\cos \ominus-1$

" 3.5 cosine six theta... enter...."

mathplane.com

\longrightarrow
\square

A Valentine's Day Flower that lasts forever... (as long as you recharge the batteries!)
A) Expres

$$
\left(3, \frac{5 \pi}{6}\right) \text { where } \mathrm{r}<0 \text { and }-2 \pi<\ominus<0 \quad\left(-3, \frac{-\pi}{6}\right)
$$

where $\mathrm{r}>0$ and $-2 \pi<\theta<0$
(3. $\frac{-7 \pi}{6}$)
where $\mathrm{r}<0$ and $0<\theta<2 \pi$
$\left(-3, \frac{11 \pi}{6}\right)$

Express $\left(6,225^{\circ}\right)$ where $\mathrm{r}>0$ and $-360^{\circ}<\theta<0^{\circ}$ (find the coterminal angle..) $\left(6,-135^{\circ}\right)$
where $\mathrm{r}<0$ and $-360^{\circ}<\theta<0^{\circ}$

$$
\left(-6,-315^{\circ}\right)
$$

where $\mathrm{r}<0$ and $0^{\circ}<\theta<360^{\circ}$
$\left(-6,45^{\circ}\right)$
B) On the polar graph, label the following coordinates:

$\mathrm{A}=\left(2, \frac{2 \pi}{3}\right)$
$B=\left(-4, \frac{\pi}{4}\right)$
$\mathrm{C}=\left(0, \frac{\pi}{2}\right)$
$\mathrm{D}=(3,0)$
$\mathrm{E}=\left(-1, \frac{-5 \pi}{3}\right)$
$\mathrm{G}=\left(3,90^{\circ}\right)$
$\mathrm{H}=\left(-2,-150^{\circ}\right)$
$\mathrm{I}=\left(4,390^{\circ}\right)$
$\mathrm{J}=\left(-1,405^{\circ}\right)$
$\mathrm{K}=\left(0,60^{\circ}\right)$

C) Sketch $y=3 \sin x$ on the $x y$ axis. then, sketch $r=3 \sin \theta$ on the polar graph

$$
\begin{aligned}
& 3 \sin (0)=0 \\
& 3 \sin \left(\frac{\pi}{6}\right)=1.5 \\
& 3 \sin \left(\frac{7 \psi}{2}\right)=3 \\
& \text { etc... }
\end{aligned}
$$

a) $(-5,5 \sqrt{3})$
b) $(0,7)$
c) $(10,-24)$

$$
\left(-10, \frac{5 \pi}{3}\right)
$$

2) Convert to rectangular coordinates

a) $\ominus=\frac{5 \pi}{6}$
b) $r=\frac{1}{3 \cos \ominus+8 \sin \ominus}$

$$
\tan \ominus=\tan \frac{5 \pi}{6}
$$

$$
\frac{y}{x}=\frac{1}{-\sqrt{3}} \quad x=-\sqrt{3} y
$$

$$
\mathrm{y}=\frac{1}{-\sqrt{3}} \mathrm{x}
$$

3) Convert $4 x^{2}+y^{2}=1$ into polar coordinates

$$
\begin{array}{ll}
\text { (ellipse) } & 4 r^{2} \cos ^{2} \Theta+r^{2} \sin ^{2} \ominus=1 \\
x=r \cos \ominus \quad y=r \sin \ominus \quad & r^{2}\left(4 \cos ^{2} \ominus+\sin ^{2} \ominus\right)=1 \\
& r^{2}=\frac{1}{\left(4 \cos ^{2} \ominus+\sin ^{2} \ominus\right)}
\end{array}
$$

4) Convert $r^{2}=\cos 2 \theta$ into rectangular coordinates

$$
\begin{array}{cl}
x^{2}+y^{2}=\cos ^{2} \ominus-\sin ^{2} \ominus & x^{2}+y^{2}=\frac{x^{2}-y^{2}}{x^{2}+y^{2}} \\
x^{2}+y^{2}=\left(\frac{x}{\sqrt{x^{2}+y^{2}}}\right)^{2}-\left(\frac{y}{\sqrt{x^{2}+y^{2}}}\right)^{2} \\
x=r \cos \ominus \quad \cos \ominus=\frac{x}{r}=\frac{x}{\sqrt{x^{2}+y^{2}}} & \left(x^{2}+y^{2}\right)^{2}=x^{2}-y^{2} \\
y=r \sin \ominus \quad \sin \ominus=\frac{y}{r}=\frac{y}{\sqrt{x^{2}+y^{2}}} &
\end{array}
$$

Then, write the equation of a circle that passes through that point (in polar form)

Use Pythagorean Theorem to get r
Or,

$$
\begin{aligned}
& x^{2}+y^{2}=r^{2} \\
& \operatorname{Tan} \ominus=\frac{y}{x}=\frac{5}{-4}=-51.3
\end{aligned}
$$

The radius is $\sqrt{41}$ so the circle is all points (in every direction) $\sqrt{41}$ from the origin..

$$
\mathrm{r}=\sqrt{41}
$$

$$
\left(\sqrt{41}, 128.7^{\circ}\right) \text { or }(\sqrt{41}, 2.246)
$$

** since the point is in Quadrant II, add 180 degrees....

$$
-51.3+180=128.7^{\circ} \quad \text { or } 2.246 \text { radians }
$$

(Note: There are an infinite number of circles that can pass through $(-4,5) \ldots$ We chose the one where the center is at the origin)
6) Convert $x y=5$ into polar coordinates Sketch the graphs and compare...
$\operatorname{rcos} \ominus(r \sin \ominus)=5$
$(y=5 / x \quad$ reciprocal function $)$
$\mathrm{r}^{2} \sin \ominus \cos \ominus=5$
$\mathrm{r}=\sqrt{\frac{5}{\sin \ominus \cos \ominus}}$

> Note: the equation is undefined at $0,90,180$, and 270 !

\ominus	0	30	45	80	120	150	170
$\pm \mathrm{r}$	DNE	3.4	3.16	5.4	DNE	DNE	DNE

7) $r=\frac{2}{1-\cos \theta}$

Convert to rectangular coordinates. Then, graph each equation to confirm.
cross multiply: $\quad \mathrm{r}-\mathrm{r} \cos \ominus=2$

$$
\begin{aligned}
& \sqrt{x^{2}+y^{2}}-x=2 \\
& \sqrt{x^{2}+y^{2}}=2+x \\
& x^{2}+y^{2}=x^{2}+4 x+4
\end{aligned}
$$

$$
y^{2}=4(x+1)
$$

8) $r=\frac{1}{3-\cos \ominus} \quad \begin{aligned} & \text { Convert to rectangular coordinates. } \\ & \text { Then, graph each equation to confirm }\end{aligned}$

$$
3 \mathrm{r}-\mathrm{r} \cos \ominus=1
$$

$$
3 \sqrt{x^{2}+y^{2}}-x=1
$$

$$
3 \sqrt{x^{2}+y^{2}}=x+1
$$

$$
9 x^{2}+9 y^{2}=x^{2}+2 x+1
$$

$$
8 x^{2}+9 y^{2}-2 x=1
$$

$8\left(x^{2}-\frac{1}{4} x+\frac{1}{64}\right)+9 y^{2}=1+\frac{1}{8}$
$8\left(x-\frac{1}{8}\right)^{2}+9 y^{2}=\frac{9}{8}$
$\frac{64\left(x-\frac{1}{8}\right)^{2}}{9}+\frac{8 y^{2}}{1}=1$
Ellipse!
$r=\frac{1}{3-\cos \ominus}$

\ominus	0	60	90	120	180	240	300	360
r	$1 / 2$	$2 / 5$	$1 / 3$	$2 / 7$	$1 / 4$	$2 / 7$	$2 / 5$	$1 / 2$

Polar/Rectangular Coordinates

Vertex: $(-1,0)$
Focus: $(0,0)$
Directrix: $x=-1$

$r=\frac{2}{1-\cos \ominus}$

\ominus	0	60	90	120	180	240	300	320	350
r	DNE	4	2	$4 / 3$	1	$4 / 3$	4	8.55	131.6

center: $(1 / 8,0)$
vertices: $(1 / 2,0)(-1 / 4,0)$
covertices: $(1 / 8, \sqrt{2} / 4)$
($1 / 8,-\wedge \sqrt{2} / 4$)

1) $r=1$

$$
\begin{array}{r}
1=1+\cos \ominus \quad \\
0=\cos \ominus \\
\ominus=90^{\circ} \text { and } 270^{\circ} \\
\left(1,90^{\circ}\right) \text { and }\left(1,270^{\circ}\right)
\end{array}
$$

2) $\begin{aligned} \mathrm{r} & =\sin \ominus \\ \mathrm{r} & =1+2 \sin \ominus\end{aligned}$
$\sin \ominus=1+2 \sin \ominus$
$-1=\sin \ominus$
$\ominus=270^{\circ}$
$\left(-1,270^{\circ}\right)$

Also, there is an intersection that doesn't occur simultaneously. However, it is an intersection... when $\mathrm{r}=0$ $0=\sin \ominus \quad \ominus=0^{\circ}$ and 180° $0=1+2 \sin \ominus \quad \ominus=210^{\circ}$ and 330° all of these points occur at the origin!

$$
1+\sin \ominus=\cos \ominus-1
$$

3) $r=1+\sin \ominus$

$$
\mathrm{r}=\cos \ominus-1
$$

$$
2=\sin \ominus-\cos \ominus
$$

square both sides

$$
4=\sin ^{2} \ominus-2 \sin \ominus \cos \ominus+\cos ^{2} \ominus
$$

$$
3=-2 \sin \ominus \cos \ominus
$$

$$
-3=\sin 2 \ominus
$$

NO SOLUTION!!

$$
\begin{aligned}
& 1+\sin \ominus=\cos \ominus-1 \\
& 1+2 \sin \theta+\sin ^{2} \theta=\cos ^{2} \theta-2 \cos \theta+1 \\
& 2 \sin \theta+2 \cos \theta=\cos ^{2} \theta-\sin ^{2} \theta \\
& 2(\sin \theta+\cos \theta)=\cos ^{2} \theta-\sin ^{2} \theta \\
& 2(\sin \theta+\cos \theta)=(\cos \varphi+\sin \theta)(\cos \theta-\sin \theta) \\
& 2=(\cos \ominus-\sin \ominus) \text { not possible... }
\end{aligned}
$$

Thanks for visiting. (Hope it helped!)
If you have questions, suggestions, or requests, let us know.
Cheers

Visit Mathplane Express for mobile at mathplane.org

Also, at TeachersPayTeachers and TES

