One Variable Inequalities \& the Number Line

$$
x<-7
$$

Inequality \& number line quiz I

1) Solve and graph:

$$
2 x+8 \leq 14
$$

2) Solve and graph:

$$
-3 y-6>15
$$

3) Describe the graphs:

b)

4) Solve and graph:

$$
\frac{w}{7}+4 \leq-3
$$

5) Solve and graph:

$$
3 x+11=14
$$

Inequality \& number line quiz II

1) Solve and graph:

$$
3 x-6<9
$$

2) Solve and graph:

$$
\frac{w}{-6} \geq 4
$$

3) Describe the graphs:

b)

4) Solve and graph:

$$
\frac{x}{.1}+2.1>4.4
$$

5) Solve and graph:

$$
2 y+6 y<24
$$

Inequality \& number line quiz III

1) Solve and graph:

$$
2 x+11 \leq 21
$$

2) Solve and graph:

$$
\frac{y}{3}+4 \leq 1
$$

3) Describe the graphs:

b)

4) Solve and graph:

$$
\frac{5 m}{7}+5>15
$$

5) Solve and graph:

$$
8 x-13 x<30
$$

Solve each question (with an inequality equation).
Then, graph on the number line.

1) Gus wants me to add gas to his car. He told me that I must add more than 2 gallons. If I have $\$ 20$ and gas costs $\$ 2.50$ per gallon, how many gallons can I add?
2) Sam works between 10 and 35 hours per week at the math store.

If he earns $\$ 12$ per hour, what is his income each week?
3) John Appleseed has $\$ 10.50$ in his pocket.

If apples cost .75 per pound, write an inequality showing the amount of apples he can afford to buy.
4) In Homer's house, the air conditioner goes on if the temperature is above 88 degrees. And, if the temperature is below 60 degrees, the heater turns on.
At what temperatures do the heating/cooling units run?

5) In Julie's room there are 3 bookshelves, each with length 4 feet.

If each shelf has at least 18 books, between 2 and 3 inches, how many possible books does she have?

SOLUTIONS- -

1) Solve and graph:

$$
\begin{array}{lll}
2 \mathrm{x}+8 & \leq 14 \\
\frac{-8}{2} & -8 & \text { subtract } 8 \\
\frac{2 \mathrm{x}}{2} & \leq \frac{6}{2} & \text { divide by } 2
\end{array}
$$

To check: test $\mathrm{x}=0$
2) Solve and graph:
3) Describe the graphs:
a)

$$
x<-7
$$

b)

To check: test $\mathrm{y}=0$

$$
\begin{aligned}
-3(0)-6 & >15 \\
-6 & >15
\end{aligned} \quad \begin{aligned}
& 0 \text { is NOT a } \\
& \text { solution... }
\end{aligned}
$$

4) Solve and graph:

$$
\mathrm{w}=-49
$$

5) Solve and graph:
then, test $w=0 \quad \frac{(0)}{7}+4 \leq-3$
$4 \leq-3$

0 is NOT a solution, so the arrow goes to the left...

$$
\begin{aligned}
& -3 y-6>15 \\
& \begin{array}{lll|}
\hline+6 & +6 & \text { add } 6 \\
\frac{-3 y}{-3} & >\frac{21}{-3} & \text { divide by }-3
\end{array} \\
& \text { Note: because you } \\
& \text { divided by a negative, } \\
& \text { the sign flips! } \\
& \mathrm{y}<\text { or }>-7 \text { ? }
\end{aligned}
$$

1) Solve and graph:

$$
\begin{array}{rlr}
\begin{aligned}
3 \mathrm{x}-6 & <9 \\
+6 & <+6
\end{aligned} & \text { add } 6 \text { to both sides } \\
\begin{array}{cl}
\frac{3 \mathrm{x}}{3} & <\frac{15}{3}
\end{array} & \text { divide by 3 } & \mathrm{x}<5 \\
\hline
\end{array}
$$

2) Solve and graph:

$\mathrm{w} \geq$ or $\leq-24 ? ? ?$

$$
\begin{aligned}
& \text { test } \mathrm{w}=0 \text { : } \\
& \frac{0}{-6} \geq 4 \quad 0 \geq 4 \mathrm{NO}
\end{aligned}
$$

The shaded part of the number
3) Describe the graphs: line does NOT include $0 .$. .
a)

$$
x<-5 \text { or } x=5
$$

b)

$$
x>-3
$$

4) Solve and graph:
$\frac{\mathrm{x}}{.1}+2.1>4.4$

$$
\frac{\mathrm{x}}{.1} \quad>2.3
$$

subtract 2.1 from both sides..
multiply by .1

$$
x>.23
$$

$$
x>(2.3)(.1)
$$

5) Solve and graph:

$$
\begin{array}{cl}
\begin{array}{c}
2 \mathrm{y}+6 \mathrm{y}<24 \\
8 \mathrm{y}<24
\end{array} & \text { collect "like" terms } \\
y & \text { divide by } 8
\end{array}
$$

Inequality \& number line quiz III $<$ "open circle"

SOLUTIONS

1) Solve and graph:

$$
\begin{array}{ll|l}
2 \mathrm{x}+11 \leq 21 \\
\frac{-11}{2 \mathrm{x}} \leq \frac{-11}{10} & \text { subtract } 11 & \mathrm{x} \leq 5 \\
\hline
\end{array}
$$

2) Solve and graph:

$$
\begin{array}{ll}
\frac{\mathrm{y}}{3}+4 \leq 1 & \text { subtract } 4 \\
\frac{\mathrm{y}}{3} \quad \leq-3 & \text { multiply by } 3 \\
y \leq-9
\end{array}
$$

3) Describe the graphs:
b)

4) Solve and graph:

$$
\begin{aligned}
& \frac{5 m}{7}+5>15 \\
& \frac{5 m}{7}>10 \\
& m>14
\end{aligned}
$$

subtract 5 from both sides
multiply $\frac{7}{5}$ to both sides

$$
\frac{7}{5} \cdot \frac{5}{7}=1
$$

5) Solve and graph:

$$
\begin{array}{rll}
8 \mathrm{x}-13 \mathrm{x} & <30 & \\
\frac{-5 \mathrm{x}}{-5}<\frac{30}{-5} & & \text { collect "like" terms } \\
\mathrm{x} & -6 & \text { divide both sides by }-5 \\
& \text { **Remember to flip the sign! }
\end{array}
$$

$$
x>-6
$$

$$
\frac{7}{5} \cdot 10=70 / 5=14
$$

Quick check: test $x=0 \quad 8(0)-13(0)<30$
$0-0<30$

Solve each question (with an inequality equation).
Then, graph on the number line.

1) Gus wants me to add gas to his car. He told me that I must add more than 2 gallons.

If I have $\$ 20$ and gas costs $\$ 2.50$ per gallon, how many gallons can I add?
Let $\mathrm{g}=$ gallons of gas
Since I must add more than 2 gallons, $g>2$
Then, since I have $\$ 20$ and gas costs $\$ 2.50 /$ gallon, I can buy up to 8 gallons of gas

$$
2<\mathrm{g} \leq 8
$$

2) Sam works between 10 and 35 hours per week at the math store.

If he earns $\$ 12$ per hour, what is his income each week?

Let $\mathrm{i}=$ income per week
We know that $\mathrm{i}=\$ 12 \mathrm{x}$ (hours)

$$
10 \leq \text { hours } \leq 35
$$

multiply by $\$ 12 \ldots$

$$
\$ 120 \leq \mathrm{i} \leq \$ 420
$$

3) John Appleseed has $\$ 10.50$ in his pocket.

If apples cost .75 per pound, write an inequality showing the amount of apples he can afford to buy.

If John has $\$ 10.50$ and apples cost $\$.75$,

$$
\text { then, } \$.75 \text { pound } \cdot(\mathrm{p}) \leq \$ 10.50
$$

where $p=\#$ of pounds of apples

$$
\mathrm{p} \leq 14
$$

Then, since apples cannot be negative,

$$
\mathrm{p} \geq 0
$$

$$
0 \leq \mathrm{p} \leq 14
$$

4) In Homer's house, the air conditioner goes on if the temperature is above 88 degrees.

And, if the temperature is below 60 degrees, the heater turns on.
At what temperatures do the heating/cooling units run?

Let $\mathrm{t}=$ temperature of Homer's house
$\mathrm{t}>88$ (air conditioner runs)

$$
\mathrm{t}<60 \text { or } \mathrm{t}>88
$$

Note: In reality, the temperatures can't extend forever for 2 reasons...

1) If the temp goes over 88 (or under 60), the unit turns on -- and, the temperature returns to the desired range..
2) If the temperature was 1000 degrees, everything would melt... Or, if the temperature was under -500 degrees, everything would be frozen!
3) In Julie's room there are 3 bookshelves, each with length 4 feet. If each shelf has at least 18 books, between 2 and 3 inches, how many possible books does she have?

Looking at 1 bookshelf:
The minimum number of books is $18 \ldots$
Then,
4 feet long x 12 inches/foot $=48$ inches...
Assuming each book is only 2 inches, then the maximum number of books is $24 \ldots$


```
54\leqb}\leq7
```

where $b=$ number of books and b is an integer
since each is a single book, we only mark the integers on the number line..

Thanks for visiting. (Hope it helped!)
If you have questions, suggestions, or requests, let us know. Cheers

Also, at Facebook, Google+, TES, TeachersPayTeachers, and Pinterest

Mathplane Express for mobile and tablets at Mathplane.org

If the perimeter of this rectangle is less than 100 units, write an inequality that describes the possible values of x .

If the perimeter of this rectangle is less than 100 units, write an inequality that describes the possible values of x .

SOLUTION

$$
\begin{aligned}
& \text { Perimeter }=2 \text { (length) }+2 \text { (width) } \\
& 2(8 x)+2(2 x-3)<100 \\
& 16 x+4 x-6<100 \\
& 20 x
\end{aligned} \begin{aligned}
& <106 \\
x & <5.3
\end{aligned}
$$

THEN, we know length/width cannot be 0 or negative!
So, $8 x>0$ and $2 x-3>0$

$$
x>0 \text { AND } x>1.5
$$

Therefore, the possible values (i.e. restrictions) of x :

$$
1.5<x<5.3
$$

