Matrix I and Matrix II

Notes, Examples, and Practice Tests

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Includes scalar multiplication, solving linear systems, Determinants, Inverses, applications, Identity matrix, Cramer's Rule, and more.

Matrix: Brief Notes and Examples

Entry-wise Addition \& Subtraction

$$
\begin{aligned}
& {\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right]+\left[\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23}
\end{array}\right]=\left[\begin{array}{lll}
a_{11}+b_{11} & a_{12}+b_{12} & a_{13}+b_{13} \\
a_{21}+b_{21} & a_{22}+b_{22} & a_{23}+b_{23}
\end{array}\right]} \\
& \\
& \text {-- matrices have same dimensions } \\
& \text {-- add/subtract corresponding entries }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Example: } \\
& \text { Let } A=\left[\begin{array}{cc}
4 & 0 \\
-3 & 2
\end{array}\right] \quad B=\left[\begin{array}{cc}
2 & 9 \\
4 & -6
\end{array}\right] \quad C=\left[\begin{array}{ccc}
3 & 1 & 7 \\
-5 & 0 & 2
\end{array}\right] \\
& \begin{aligned}
A+B & =\left[\begin{array}{cc}
4+2 & 0+9 \\
-3+4 & 2+-6
\end{array}\right] & B+A & =\left[\begin{array}{cc}
2+4 & 9+0 \\
4-3 & -6+2
\end{array}\right]
\end{aligned} \begin{array}{rlr}
A-B=\left[\begin{array}{cc}
4-2 & 0-9 \\
-3-4 & 2--6
\end{array}\right] & B-A=\left[\begin{array}{cc}
2-4 & 9-0 \\
4--3 & -6-2
\end{array}\right] \\
& =\left[\begin{array}{rr}
6 & 9 \\
1 & -4
\end{array}\right] & =\left[\begin{array}{rr}
2 & -9 \\
-7 & 8
\end{array}\right]
\end{array} \\
& \mathrm{A}+\mathrm{C}=\text { "undefined" } \\
& \text { (different dimensions) }
\end{aligned}
$$

(Note: matrix addition is commutative and associative.
Matrix subtraction is not!)

Scalar Multiplication

$$
\mathrm{s} \cdot\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right]=\left[\begin{array}{ll}
\mathrm{s} \cdot \mathrm{a} & \mathrm{~s} \cdot \mathrm{~b} \\
\mathrm{~s} \cdot \mathrm{c} & \mathrm{~s} \cdot \mathrm{~d}
\end{array}\right]
$$

Example:

$$
\text { Let } A=\left[\begin{array}{cc}
4 & 0 \\
-3 & 2 / 3
\end{array}\right] \quad 3 A=\left[\begin{array}{cc}
3(4) & 3(0) \\
3(-3) & 3(2 / 3)
\end{array}\right]=\left[\begin{array}{cc}
12 & 0 \\
-9 & 2
\end{array}\right]
$$

Other properties of Addition, Subtraction, and Scalar Multiplication

Let A, B, C be matrices (of same dimension) r, s be scalars

- $\quad \mathrm{A}-\mathrm{B}=\mathrm{A}+(-\mathrm{B})$
- $A+(B+C)=(A+B)+C$
- $r(A+B)=r A+r B$
- $(r+s) A=r A+r A$
- $\quad \mathrm{rsA}=r(\mathrm{sA})$

Multiply ROWS of the first matrix by COLUMNS of the second matrix.
columns
$1 \& 2$
row $1\left[\begin{array}{ll}1 & 3 \\ 2 & 5\end{array}\right]\left[\begin{array}{l}-3 \\ 4\end{array}\right]$
columns
$1 \& 2$
row 1
row 2

"Row $1 \times$ Column $1 "=$ " $1-1$ slot"

$$
(1 \times-3)+(3 \times 4)=9
$$

"Row $1 \times$ Column 2" $=$ "1-2 slot"

$$
(1 \times 0)+(3 \times 2)=6
$$

And, "row $2 x$ column 2 " $=$ " $2-2$ slot" $(2 \times 0)+(5 \times 2)=10$
"row 2 x column $1 "=$ " $2-1$ slot"

$$
(2 \times-3)+(5 \times 4)=14
$$

Note: when multiplying a row by a column, multiply corresponding entries and add them up.

Important: \# of rows in first matrix must equal the \# of columns in the second matrix!

Example:

$$
\begin{aligned}
& \text { Let } \quad \mathrm{A}=\left[\begin{array}{cc}
3 & -6 \\
0 & 2 / 3
\end{array}\right] \quad \mathrm{B}=\left[\begin{array}{cc}
1 & 4 \\
1 / 4 & -2
\end{array}\right] \quad \mathrm{C}=\left[\begin{array}{ccc}
2 & 1 & 0 \\
1 / 5 & -3 & -5
\end{array}\right] \\
& A B=\left[\begin{array}{ll}
(3 \times 1)+(-6 \times 1 / 4) & (3 \times 4)+(-6 \times-2) \\
(0 \times 1)+(2 / 3 \times 1 / 4) & (0 \times 4)+(2 / 3 \times-2)
\end{array}\right] \quad B A=\left[\begin{array}{cc}
(1 \times 3)+(4 \times 0) & (1 \times-6)+(4 \times 2 / 3) \\
(1 / 4 \times 3)+(-2 \times 0) & (1 / 4 \times-6)+(-2 \times 2 / 3)
\end{array}\right] \\
& =\left[\begin{array}{cc}
3 / 2 & 24 \\
1 / 6 & -4 / 3
\end{array}\right] \quad \begin{array}{l}
\text { Note: } \mathrm{AB} \neq \mathrm{BA} \\
\text { (matrix multiplication is } \\
\text { NOT commutative!) }
\end{array}=\left[\begin{array}{cc}
3 & -10 / 3 \\
3 / 4 & -17 / 6
\end{array}\right] \\
& \mathrm{AC}=\left[\begin{array}{lll}
(3 \times 2)+(-6 \times 1 / 5) & (3 \times 1)+(-6 \times-3) & (3 \times 0)+(-6 \times-5) \\
(0 \times 2)+(2 / 3 \times 1 / 5) & (0 \times 1)+(2 / 3 \times-3) & (0 \times 0)+(2 / 3 \times-5)
\end{array}\right]=\left[\begin{array}{ccc}
24 / 5 & 21 & 30 \\
2 / 15 & -2 & -10 / 3
\end{array}\right] \\
& \mathrm{BC}=\left[\begin{array}{lll}
(1 \times 2)+(4 \times 1 / 5) & (1 \times 1)+(4 \times-3) & (1 \times 0)+(4 \times-5) \\
(1 / 4 \times 2)+(-2 \times 1 / 5) & (1 / 4 \times 1)+(-2 \times-3) & (1 / 4 \times 0)+(-2 \times-5)
\end{array}\right]=\left[\begin{array}{lll}
14 / 5 & -11 & -20 \\
1 / 10 & 25 / 4 & 10
\end{array}\right]
\end{aligned}
$$

CA does not exist
CB does not exist
(C has 3 rows and $A \& B$ have only 2 columns!)

$$
\begin{aligned}
& \mathrm{AC}=\left[\begin{array}{cc}
\left.\begin{array}{ll}
3 & -6 \\
0 & 2 / 3
\end{array}\right]\left[\begin{array}{c}
2 \\
1 / 5
\end{array}\right) & 1 \\
-3 & -5
\end{array}\right]=\left[\begin{array}{ccc}
24 / 5 & 21 & 30 \\
2 / 15 & -2 & -10 / 3
\end{array}\right] \\
& \mathrm{CA}=\left[\begin{array}{ccc}
2 & 1 & 0 \\
1 / 5 & -3 & -5
\end{array}\right]\left[\begin{array}{l}
3 \\
-6 \\
0
\end{array}\right] \\
& \text { Rows and columns } \\
& \text { don't match up! } \\
& \text { (CA doesn't exist) }
\end{aligned}
$$

Matrix Example: Linear System Application

Find the solution of the following linear equations:

$$
\begin{aligned}
& 3 x+y-z=-1 \\
& x-3 y+2 z=11 \\
& 2 y+4 z=4
\end{aligned}
$$

Step 1: Set up the matrix

$$
\left|\begin{array}{rrr:r}
3 & 1 & -1 & -1 \\
1 & -3 & 2 & 11 \\
0 & 2 & 4 & 4
\end{array}\right|
$$

Coefficients of x (column 1)
(Set up a matrix; then, change to Reduced Row Echelon Form.)
y (column 2)
z (column 3)
and, the solutions (column 4)

The goal is to change the matrix to
Reduced Row Echelon Form.

$$
\left|\begin{array}{lll:l}
1 & 0 & 0 & \mathrm{x} \\
0 & 1 & 0 & \mathrm{y} \\
0 & 0 & 1 & \mathrm{z}
\end{array}\right|
$$

Step 2: Use strategies to eliminate, switch, and reduce columns \& rows and the included elements.

$$
\begin{aligned}
& \left|\begin{array}{rrrll}
3 & 1 & -1 & 1 & -1 \\
1 & -3 & 2 & 11 \\
0 & 2 & 4 & 1 & 4
\end{array}\right| \quad \text { "Switch Rows" Rearrange the } 3 \text { rows. } \\
& \left|\begin{array}{rrr:r}
1 & -3 & 2 & 11 \\
0 & 2 & 4 & 4 \\
3 & 1 & -1 & -1
\end{array}\right| \\
& \left|\begin{array}{ccc:c}
1 & -3 & 2 & 11 \\
0 & 1 & 2 & 2 \\
3 & 1 & -1 & -1
\end{array}\right| \\
& \left|\begin{array}{ccc:c}
1 & -3 & 2 & 11 \\
0 & 1 & 2 & 2 \\
0 & 10 & -7 & -34
\end{array}\right| \\
& \begin{array}{ll}
\text { "Reduce to 1" } & \text { Divide R2 by } 2 \\
\text { (Multiply/Divide } & \left(\frac{1}{2} \text { R2 }\right) \\
\text { to get 0's \& 1's) } &
\end{array} \\
& \text { "Add to eliminate" } \\
& -3(R 1)+R 3 \\
& \text { (Column } 1 \text { is firished..) } \\
& \text { Strategy Note: Row } 2 \text { has a ' } 0 \text { ' and a ' } 1 \text { '... } \\
& \text {---> We can eliminate the other numbers in } \\
& \text { column } 2 \text { without distupting Column } 1
\end{aligned}
$$

$$
\begin{aligned}
& \left|\begin{array}{ccc:c}
1 & -3 & 2 & 11 \\
0 & 1 & 2 & 2 \\
0 & 10 & -7 & -34
\end{array}\right| \begin{array}{l}
\text { First, } \\
\text { 3R2 } 2+\mathrm{R} 1
\end{array}\left|\begin{array}{ccc:c}
1 & 0 & 8 & 17 \\
0 & 1 & 2 & 2 \\
0 & 10 & -7 & -34
\end{array}\right| \\
& \left|\begin{array}{ccc:c}
1 & 0 & 8 & 17 \\
0 & 1 & 2 & 2 \\
0 & 0 & -27 & -54
\end{array}\right| \begin{array}{ll}
\text { Then, } \\
\text { Multiply R3 by }-1 / 27 \longrightarrow
\end{array} \longrightarrow\left|\begin{array}{ccc:c}
1 & 0 & 8 & 17 \\
0 & 1 & 2 & 2 \\
0 & 0 & 1 & 2
\end{array}\right|
\end{aligned}
$$

Strategy: Again, we have 0s and 1s in a Row
(3). So, we can eliminate the other elements
in Column 3!!

$$
\begin{array}{l|ccc:c}
-2 \mathrm{R} 3+\mathrm{R} 2 \ldots \\
\text { then, } \\
-8 \mathrm{R} 3+\mathrm{R} 1 \ldots
\end{array}\left|\begin{array}{ccc:c:c|c}
1 & 0 & 8 & 17 \\
0 & 1 & 0 & -2 \\
0 & 0 & 1 & 2
\end{array}\right| \longrightarrow\left|\begin{array}{ccc:c}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & -2 \\
0 & 0 & 1 & 2
\end{array}\right| \begin{aligned}
& \text { Reduced Row } \\
& \begin{array}{l}
\text { Echelon Form shows } \\
\mathrm{x}=1 \\
\mathrm{y}=-2 \\
z=2
\end{array} \\
&
\end{aligned}
$$

Step 3: "Check your solution"

1) Plug into original linear equations:

$$
\begin{aligned}
& 3(1)+(-2)-(2)=-1 \\
& (1)-3(-2)+2(2)=11 \\
& 2(-2)+4(2)=4
\end{aligned}
$$

2) Shorthand multiplication inside matrix:

$$
\left|\begin{array}{ccc:c}
3 & 1 & -1 & -1 \\
1 & -3 & 2 & 11 \\
0 & 2 & 4 & 4
\end{array}\right| \quad \begin{aligned}
& \text { Row 1: }(3 \times 1)+(1 \times-2)+(-1 \times 2)=-1 \\
& \text { Row 2: }(1 \times 1)+(-3 \times-2)+(2 \times 2)=11 \\
& \text { Row 3: }(0 \times 1)+(2 \times-2)+(4 \times 2)=4
\end{aligned}
$$

solution: row echelon form"

Example:

$$
\begin{aligned}
& 2 x-2 y=14 \\
& 3 x+y=33
\end{aligned}
$$

multiply first equation by $1 / 2$

$$
\begin{gathered}
x-y=7 \\
3 x+y=33
\end{gathered}
$$

multiply first equation and add to 2 nd

$$
\begin{array}{cl}
\begin{array}{cl}
x-y=7 & \quad \text { equation } \\
-3 x+3 y=-21 & \\
3 x+y=33 & \text { then, solve } \\
\cline { 1 - 3 }=12 & \text { for } y \\
y=3 &
\end{array}
\end{array}
$$

Since $y=3$, substitute into first equation to get x

$$
\begin{array}{r}
x-(3)=7 \\
x=10
\end{array}
$$

$\left[\begin{array}{rr|r}2 & -2 & 14 \\ 3 & 1 & 33\end{array}\right]$
$\left[\begin{array}{cc|c}1 & -1 & 7 \\ 3 & 1 & 33\end{array}\right]$

$$
\left[\begin{array}{cc|c}
1 & -1 & 7 \\
0 & 4 & 12
\end{array}\right]
$$

$$
\left[\begin{array}{cc|c}
1 & -1 & 7 \\
0 & 1 & 3
\end{array}\right]
$$

$$
\left[\begin{array}{ll|c}
1 & 0 & 10 \\
0 & 1 & 3
\end{array}\right]
$$

coefficients are in the matrix

$$
\frac{1}{2} \mathrm{R} 1
$$

$$
-3 \mathrm{R} 1+\mathrm{R} 2
$$

(replace R2)
$\mathrm{R} 2+\mathrm{R} 1$
(replace R1)
reduced row echelon form, reveals

$$
x=10 \text { and } y=3
$$

Example:

$$
\begin{aligned}
& 3 x+2 y=-4 \\
& -2 x+y+5 z=25 \\
& x-4 y+2 z=2
\end{aligned}
$$

swap equation 1 and 3

$$
\begin{aligned}
x-4 y+2 z & =2 \\
-2 x+y+5 z & =25 \\
3 x+2 y \quad & =-4
\end{aligned}
$$

$$
x-4 y+2 z=2
$$

$$
2 x-8 y+4 z=4
$$

(A)

$$
\frac{-2 x+y+5 z=25}{-7 y+9 z=29}
$$

$$
x-4 y+2 z=2 \quad \text { multiply } 1 \text { st equation by }-3
$$

$-3 x+12 y-6 z=-6$ and add to 3rd equation
(B)

$$
\begin{aligned}
3 x+2 y & =-4 \\
\hline 14 y-6 z & =-10
\end{aligned}
$$

$$
-14 y+18 z=58
$$

$$
14 y-6 z=-10
$$

$$
12 z=48
$$

$$
z=4
$$

$$
y-\frac{9 z}{7}=\frac{-29}{7}
$$

"Gauss elimination to row echelon form"
$\left[\begin{array}{ccc|c}3 & 2 & 0 & -4 \\ -2 & 1 & 5 & 25 \\ 1 & -4 & 2 & 2\end{array}\right]$
coefficients and solution placed into augmented matrix
$\left[\begin{array}{ccc|c}1 & -4 & 2 & 2 \\ -2 & 1 & 5 & 25 \\ 3 & 2 & 0 & -4\end{array}\right]$
swap R1 and R3
$2 \mathrm{R} 1+\mathrm{R} 2$
(replace R2)
$\left[\begin{array}{ccc|c}1 & -4 & 2 & 2 \\ 0 & -7 & 9 & 29 \\ 3 & 2 & 0 & -4\end{array}\right]$
$\left[\begin{array}{ccc|c}1 & -4 & 2 & 2 \\ 0 & -7 & 9 & 29 \\ 0 & 14 & -6 & -10\end{array}\right]$
$-3 R 1+R 3$
(replace R3)
$2 \mathrm{R} 2+\mathrm{R} 3$
$\left[\begin{array}{ccc|c}1 & -4 & 2 & 2 \\ 0 & -7 & 9 & 29 \\ 0 & 0 & 12 & 48\end{array}\right]$
$\left[\begin{array}{ccc|c}1 & -4 & 2 & 2 \\ 0 & -7 & 9 & 29 \\ 0 & 0 & 1 & 4\end{array}\right]$
$\frac{1}{4} \mathrm{R}$
(replace R3)
$\left[\begin{array}{ccc|c}1 & -4 & 2 & 2 \\ 0 & 1 & -9 / 7 & -29 / 7 \\ 0 & 0 & 1 & 4\end{array}\right]$
$\frac{-1}{7}$ R2
(Gauss Elimination leads to row echelon form, enough to easily reveal the solutions)

Matrix Applications

Example: 3 solutions for the quadratic equation $\mathrm{y}=\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$ are $(1,4),(-3,10)$, and $(-1,-1)$.
What is the equation?
If we substitute each solution into the general equation, we end up with 3 equations with 3 unknowns...

$$
\begin{array}{ll}
(1,4): & a(1)^{2}+b(1)+c=4 \\
(-3,10): & a(-3)^{2}+b(-3)+c=10 \\
(-1,-1): ~ & a(-1)^{2}+b(-1)+c=-1
\end{array} \quad \begin{aligned}
& a^{2}+b+c=4 \\
& 9 a^{2}-3 b+c=10 \\
& a^{2}-b+c+1
\end{aligned}
$$

Then, to solve the system, establish an augmented matrix...

Finally, multiply row 3 by (-1) and add to row 1$\}$

The augmented matrix is in Reduced Row Echelon Form

$$
\left[\begin{array}{lll:l}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 5 / 2 \\
0 & 0 & 1 & 1 / 2
\end{array}\right]
$$ revealing the solution:

$$
\begin{aligned}
& a=2 \\
& b=5 / 2 \\
& c=-1 / 2
\end{aligned} \quad y=2 x^{2}+\frac{5}{2} x-\frac{1}{2}
$$

Note: To check the solution, simply plug in the 3 points above..

Solve using the TI - nspire CX Graphing Calculator

Home/ON turn unit on A Calculate
 Menu

7 Matrix \& Vector
5 Reduced Row-Echelon Form rref() appears
Template Key (next to the 9) template symbol menu appears
(Select the matrix template)
Number of Rows: 3
Number of Columns: 4
enter matrix appears (Input the values) enter

mathplane.com

Example: A business borrows $\$ 45,000$ to buy a special math machine.
The money is divided into 3 loans at $6 \%, 8 \%$, and 10% interest rates.
Annual (simple) interest payments are $\$ 3,740$ per year.
If the total amount borrowed at 6% and 8% is twice the amount borrowed at 10%, what is the amount of each loan?

Step 1: Establish Variables
$A=$ Amount borrowed at 6%
$B=$ Amount borrowed at 8%
$C=$ Amount borrowed at 10%

Step 2: Determine equations that describe the word problem

$$
\begin{aligned}
& \text { total amount borrowed: } \quad 45,000=\mathrm{A}+\mathrm{B}+\mathrm{C} \\
& \text { interest payments: } \quad 3740=\mathrm{A}(.06)+\mathrm{B}(.08)+\mathrm{C}(.10) \\
& \text { borrowed amounts: } \mathrm{A}+\mathrm{B}=2 \mathrm{C} \quad(6 \% \text { and } 8 \% \text { are twice as much as } 10 \%) \\
& \text { (comparison) } \\
& \text { or, } \mathrm{A}+\mathrm{B}-2 \mathrm{C}=0
\end{aligned}
$$

Step 3: Set up the system of equations (augmented matrix) and solve

Step 4: Check answer....
6% of $\$ 8,000=\$ 480$
8% of $\$ 22,000=\$ 1760$

10% of $\$ 15,000=\$ 1,500$$\quad$ Total interest payment: $\$ 3,740 \quad$| 6% and 8% loan amount: |
| :---: |
| $\$ 30,000$
 10% loan amount:
 $\$ 15,000$ |

Matrix application - Modeling data from a table

Example: A restaurant menu offers a variety of items. Or, a customer may order a prepared meal of particular items.

The table at the right displays the item prices in each meal option.

The table at the right displays the item prices (in dollars) in each meal.

Restaurant menu (Items in \$)

Meal Option	Salad	Soup	Entree	Beverage	Dessert
1	3	2	7	1.50	2.50
2	4	0	8	2	3
3	6	5	0	2	0
4	0	4	8	1.50	3.50

1) Write the info (in the table) as a 4×5 menu matrix M .
2) On Friday, we ordered 15 meal \#1's, 22 meal \#2's, 3 meal \#3's, and 18 meal \#4's. Express the Friday orders as a row matrix F .
3) Find matrix FM. What does FM represent?
4) Menu Table expressed as a 4×5 matrix:

\quad| Menu Matrix M |
| :--- |
| (4 rows x 5 columns) | \(\left[\begin{array}{ccccc}3 \& 2 \& 7 \& 1.5 \& 2.5

4 \& 0 \& 8 \& 2 \& 3

$$
\begin{array}{l}\text { Rows: meal options } \\
\text { Columns: menu items }\end{array}
$$ \& 6 \& 5 \& 0 \& 2

0 \& 4 \& 8 \& 1.5 \& 3.5\end{array}\right]\)
2) Row matrix describing the Friday order:

Friday Order Matrix F (1 row x 4 columns)

3) FM is the total money spent for each item:

$$
\left.\left.\begin{array}{rl}
{\left[\begin{array}{lll}
15 & 22 & 3
\end{array} 18\right.}
\end{array}\right]\left[\begin{array}{ccccc}
3 & 2 & 7 & 1.5 & 2.5 \\
4 & 0 & 8 & 2 & 3 \\
6 & 5 & 0 & 2 & 0 \\
0 & 4 & 8 & 1.5 & 3.5
\end{array}\right]=\left[\begin{array}{llll}
151 & 117 & 425 & 99.5 \\
\hline
\end{array}\right] \begin{array}{l}
166.5
\end{array}\right]
$$

Practice Quiz- \rightarrow

Matrix Test
1)

$$
\begin{array}{cc}
A=\left[\begin{array}{ccc}
3 & 2 & -1 \\
2 & 0 & 4 \\
-1 & 5 & 6
\end{array}\right] & B=\left[\begin{array}{ccc}
1 & -4 & 0 \\
2 & 3 & -3 \\
1 & 5 & 2
\end{array}\right] \\
A+B= & 3 A=
\end{array}
$$

$$
\mathrm{BA}=
$$

2) Solve using matrices.
A) $3 \mathrm{X}+2 \mathrm{Y}=10$

$$
\mathrm{X}-6 \mathrm{Y}=0
$$

B) $\quad 2 \mathrm{X}-3 \mathrm{Y}+\mathrm{Z}=12$
$4 Y-Z=-9$
$X+6 Y+2 Z=6$

Challenge: Find X and Y
C) $2 \mathrm{X}+\mathrm{Y}+5 \mathrm{Z}=10$
$X+2 Y-3 Z=14$
3) Find x and y :

$$
\left[\begin{array}{ll}
\mathrm{x} & \mathrm{y} \\
2 & 1
\end{array}\right] \cdot\left[\begin{array}{cc}
1 & 3 \\
-1 & 6
\end{array}\right]=\left[\begin{array}{cc}
2 & 15 \\
1 & 12
\end{array}\right]
$$

$$
\left[\begin{array}{rrc}
-2 & 1 & 2 \\
3 & 4 & 2 \\
2 & 0 & 4
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
\mathrm{x} \\
3
\end{array}\right]=\left[\begin{array}{l}
6 \\
17 \\
\mathrm{y}
\end{array}\right]
$$

4) For a 2×2 matrix D,

$$
\text { D. }\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
2 \\
3
\end{array}\right] \quad \text { and, } \quad D \cdot\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
4 \\
-1
\end{array}\right]
$$

What matrix should you multiply D by to get

1) $\mathrm{A}=\left[\begin{array}{ccc}3 & 2 & -1 \\ 2 & 0 & 4 \\ -1 & 5 & 6\end{array}\right]$
$B=\left[\begin{array}{ccc}1 & -4 & 0 \\ 2 & 3 & -3 \\ 1 & 5 & 2\end{array}\right]$
$3 \mathrm{~A}=$
$\left[\begin{array}{lll}3 \times 3 & 3 \times 2 & 3 \times(-1) \\ 3 \times 2 & 3 \times 0 & 3 \times 4 \\ 3 \times(-1) & 3 \times 5 & 3 \times 6\end{array}\right]$

Note: $\mathrm{BA} \neq \mathrm{AB}$
$B A=\left[\begin{array}{ccc}1 & -4 & 0 \\ 2 & 3 & -3 \\ 1 & 5 & 2\end{array}\right]\left[\begin{array}{ccc}3 & 2 & -1 \\ 2 & 0 & 4 \\ -1 & 5 & 6\end{array}\right]$
row $1 \mathrm{~B} /$ column $1 \mathrm{~A}=(1 \mathrm{x} 3)+(-4 \mathrm{x} 2)+(0 \mathrm{x}-1)=-5$
row $1 B /$ column $2 \mathrm{~A}=(1 \times 2)+(-4 \times 0)+(0 \times 5)=2$
row $3 \mathrm{~B} /$ column $3 \mathrm{~A}=(1 \mathrm{x}-1)+(5 \mathrm{x} 4)+(2 \mathrm{x} 6)=31$

$$
\left[\begin{array}{ccc}
4 & -2 & -1 \\
4 & 3 & 1 \\
0 & 10 & 8
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
9 & 6 & -3 \\
6 & 0 & 12 \\
-3 & 15 & 18
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
-5 & 2 & -17 \\
15 & -11 & -8 \\
11 & 12 & 31
\end{array}\right]
$$

2) Solve using matrices.
A) $3 \mathrm{X}+2 \mathrm{Y}=10$
$\mathrm{X}-6 \mathrm{Y}=0$
$\left[\begin{array}{cc:c}3 & 2 & 10 \\ 1 & -6 & 0\end{array}\right]-3 R 2+\mathrm{R} 1$
$\left[\begin{array}{cc:c}0 & 20 & 10 \\ 1 & -6 & 0\end{array}\right] \quad$ Divide R1 by 20
$\left[\begin{array}{rr:c}0 & 1 & \frac{1}{2} \\ 1 & -6 & 0\end{array}\right] \quad 6 \mathrm{R} 1+\mathrm{R} 2$
Challenge: Find X and Y
B) $2 \mathrm{X}-3 \mathrm{Y}+\mathrm{Z}=12$
$4 Y-Z=-9$
$X+6 Y+2 Z=6$
$\left[\begin{array}{ll:l}0 & 1 & \frac{1}{2} \\ 1 & 0 & 3\end{array}\right]$
$\left[\begin{array}{rrr:r}2 & -3 & 1 & 12 \\ 0 & 4 & -1 & -9 \\ 1 & 6 & 2 & 6\end{array}\right]-2 \mathrm{R} 3+\mathrm{R} 1 \quad\left[\begin{array}{rrr:r}1 & 6 & 2 & 6 \\ 0 & 1 & 1 / 5 & 0 \\ 0 & 4 & -1 & -9\end{array}\right]-4 \mathrm{R} 2+\mathrm{R} 3$
$\left[\begin{array}{rrr:r}0 & -15 & -3 & 0 \\ 0 & 4 & -1 & -9 \\ 1 & 6 & 2 & 6\end{array}\right]-1 / 15(\mathrm{R} 1) \quad\left[\begin{array}{ccc:c}1 & 6 & 2 & 6 \\ 0 & 1 & 1 / 5 & 0 \\ 0 & 0 & -9 / 5 & -9\end{array}\right]-5 / 9(\mathrm{R} 3)$ $\mathrm{X}=3$
$\mathrm{Y}=\frac{1}{2}$
$\left[\begin{array}{rrr:r}0 & 1 & 1 / 5 & 0 \\ 0 & 4 & -1 & -9 \\ 1 & 6 & 2 & 6\end{array}\right]$ rearrange rows $\left[\begin{array}{ccc:c}1 & 6 & 2 & 6 \\ 0 & 1 & 1 / 5 & 0 \\ 0 & 0 & 1 & 5\end{array}\right]$
(Note: to check you work,
plug solutions into original equations)

$$
\text { C) } \quad \begin{aligned}
2 X+Y+5 Z & =10 \\
X+2 Y-3 Z & =14
\end{aligned}
$$

$$
\left[\begin{array}{ccc:c}
2 & 1 & 5 & 10 \\
1 & 2 & -3 & 14
\end{array}\right] \quad-2 \mathrm{R} 2+\mathrm{R} 1
$$

$$
\begin{array}{r|l|}
\mathrm{Z}=5 \\
\mathrm{Y}+1 / 5 \mathrm{Z} & =0 \\
\mathrm{X}+6 \mathrm{Y}+2 \mathrm{Z} & =6
\end{array} \quad \begin{aligned}
& \mathrm{Z}=5 \\
& \mathrm{Y}=-1 \\
& \mathrm{X}=2
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc:c}
0 & -3 & 11 & -18 \\
1 & 2 & -3 & 14
\end{array}\right] \quad \text { Switch rows } \quad\left[\begin{array}{ccc:c}
1 & 0 & 13 / 3 & 2 \\
0 & 1 & -11 / 3 & 6
\end{array}\right] \begin{array}{l}
\text { change back to linear } \\
\text { forms }
\end{array}} \\
& {\left[\begin{array}{ccc:c}
1 & 2 & -3 & 14 \\
0 & -3 & 11 & -18
\end{array}\right] \quad 2 / 3(\mathrm{R} 2)+\mathrm{R} 1} \\
& {\left[\begin{array}{ccc:c}
1 & 0 & 13 / 3 & 2 \\
0 & -3 & 11 & -18
\end{array}\right]-1 / 3(\mathrm{R} 2) \quad \begin{array}{l}
\mathrm{X}=2-\frac{13}{3} \mathrm{Z} \\
\mathrm{Y}=6+\frac{11}{3} \mathrm{Z}
\end{array}}
\end{aligned}
$$

3) Find x and y :

$$
\begin{array}{r}
{\left[\begin{array}{cc}
\mathrm{x} & \mathrm{y} \\
2 & 1
\end{array}\right] \cdot\left[\begin{array}{cc}
1 & 3 \\
-1 & 6
\end{array}\right]=\left[\begin{array}{cc}
2 & 15 \\
1 & 12
\end{array}\right]} \\
\begin{array}{rl}
1 \mathrm{x}+(-1) \mathrm{y}=2 & -3 \mathrm{x}+3 \mathrm{y}=-6 \\
3 \mathrm{x}+6 \mathrm{y}=15 & 3 \mathrm{x}+6 \mathrm{y}=15 \\
9 \mathrm{y}=9
\end{array} \\
\begin{array}{l}
\mathrm{y}=1 \\
\text { so, } \\
\mathrm{x}=3
\end{array}
\end{array}
$$

$$
\left[\begin{array}{rrc}
-2 & 1 & 2 \\
3 & 4 & 2 \\
2 & 0 & 4
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
x \\
3
\end{array}\right]=\left[\begin{array}{l}
6 \\
17 \\
y
\end{array}\right]
$$

use row 1 in A and column 1 in $\mathrm{X} . .$.

$$
\begin{gathered}
(-2)(1)+(1)(x)+(2)(3)=6 \\
-2+x+6=6
\end{gathered}
$$

Since $\mathrm{x}=2$, row 3 in A and column 1 in $\mathrm{X} \ldots$.

$$
\begin{aligned}
& \text { then }(3)(1)+(4)(2)+(2)(3)=17 \\
& \text { then, }(2)(1)+(0)(2)+(4)(3)=y
\end{aligned}
$$

$$
2+0+12=y \quad y=14
$$

4) For a 2×2 matrix D,

$$
\text { D. }\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
2 \\
3
\end{array}\right] \quad \text { and, } \quad \mathrm{D} \cdot\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
4 \\
-1
\end{array}\right] \quad \begin{aligned}
& \text { What matrix should you multiply D by } \\
& \text { to get }
\end{aligned}
$$

$$
\begin{aligned}
& \text { First, let's find D... } \\
& D=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \\
& \mathrm{D} \cdot\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
2 \\
3
\end{array}\right] \\
& D \cdot\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{r}
4 \\
-1
\end{array}\right] \\
& {\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
\mathrm{a} \\
\mathrm{c}
\end{array}\right] \quad\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
\mathrm{b} \\
\mathrm{~d}
\end{array}\right]} \\
& \mathrm{D}=\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right]=\left[\begin{array}{rr}
2 & 4 \\
3 & -1
\end{array}\right] \\
& \mathrm{D} \cdot\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right]=\left[\begin{array}{l}
5 \\
5
\end{array}\right] \\
& {\left[\begin{array}{rr}
2 & 4 \\
3 & -1
\end{array}\right] \cdot\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right]=\left[\begin{array}{l}
5 \\
5
\end{array}\right]}
\end{aligned}
$$

$$
\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right]=\left[\begin{array}{r}
25 / 14 \\
5 / 14
\end{array}\right]
$$

$$
\begin{array}{lll}
2 \mathrm{x}+4 \mathrm{y}=5 & \square & \mathrm{a}+4 \mathrm{y}=5 \\
3 \mathrm{x}-\mathrm{y}=5 & \square & \square \mathrm{a}-4 \mathrm{y}=20
\end{array} \quad \mathrm{x}=25 / 14 \quad \mathrm{y}=5 / 14
$$

Definition: A square matrix where every element in the main diagonal is a 1 , and all the other elements are 0
$1 \times 6=6$ (1 is the multiplicative identity)
If I is an identity matrix and M is a matrix (of same dimensions),

$$
\text { then } \mathrm{I} \times \mathrm{M}=\mathrm{M} \text { or } \mathrm{MxI}=\mathbf{M}
$$

$$
\begin{array}{ll}
{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \text { is an identity matrix }} & {\left[\begin{array}{cc}
3 & -5 \\
2 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
3 & -5 \\
2 & 1
\end{array}\right]} \\
{\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \text { is not an identity matrix! }} & {\left[\begin{array}{cc}
-4 & 2 \\
1 & 3
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{rr}
2 & -4 \\
3 & 1
\end{array}\right]}
\end{array}
$$

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \text { is a } 3 \times 3 \text { identity matrix }
$$

Inverse Matrix
Definition: A square matrix A^{-1} that when multiplied to another matrix A results in the identity matrix.
Non-square matrices do not have inverses; also, some square matrices do not have inverses.

$$
\frac{1}{10} \text { and } 10 \text { are multiplicative inverses (reciprocals). }
$$

$$
\begin{gathered}
\frac{1}{10} \times 10=1 \quad 10 \times \frac{1}{10}=1 \\
A=\left[\begin{array}{cc}
3 & 6 \\
-2 & 2
\end{array}\right] \\
\mathrm{AA}^{-1}=\left[\begin{array}{ll}
(3 \times 1 / 9)+(6 \times 1 / 9) & (3 \times-1 / 3)+(6 \times 1 / 6) \\
(-2 \times 1 / 9)+(2 \times 1 / 9) & (-2 \times-1 / 3)+(2 \times 1 / 6)
\end{array}\right]=\left[\begin{array}{ll}
\frac{1}{9} & \frac{-1}{3} \\
\frac{1}{9} & \frac{1}{6}
\end{array}\right] \\
\mathrm{A}^{-1} \mathrm{~A}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
{\left[\begin{array}{ll}
(1 / 9 \times 3)+(-1 / 3 \times-2) & (1 / 9 \times 6)+(-1 / 3 \times 2) \\
(1 / 9 \times 3)+(1 / 6 \times-2) & (1 / 9 \times 6)+(1 / 6 \times 2)
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]}
\end{gathered}
$$

If a square matrix does not have an inverse, it is non-invertible.

When does that happen? If and only if the determinant of the matrix is 0

Finding the inverse of a square matrix:
Method 1: Using the formula

$$
X=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad \text { The inverse of } X \text { is } \quad \frac{1}{|X|}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] \quad \text { or } \quad \frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Example:

$$
\left.\begin{array}{rr}
\mathrm{X}=\left[\begin{array}{rr}
1 & 4 \\
-2 & 2
\end{array}\right] \quad \text { Find } \mathrm{X}^{-1} \quad \text { "Find the determinant": }|\mathrm{X}|=\left|\begin{array}{rr}
1 & 4 \\
-2 & 2
\end{array}\right|=2-(-8)=10 \\
& \text { "Transform the matrix": }\left[\begin{array}{rr}
1 & 4 \\
-2 & 2
\end{array}\right]
\end{array} \underset{\sim}{2} \begin{array}{r}
-4 \\
2
\end{array}\right]
$$

Check your answer:

Does $\mathrm{X} \cdot \mathrm{X}^{-1}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] ? \quad\left[\begin{array}{cc}1 & 4 \\ -2 & 2\end{array}\right]\left[\begin{array}{cc}\frac{1}{5} & \frac{-2}{5} \\ \frac{1}{5} & \frac{1}{10}\end{array}\right]=\left[\begin{array}{ll}(1 / 5+4 / 5) & (-2 / 5+4 / 10) \\ (-2 / 5+2 / 5) & (4 / 5+2 / 10)\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ Yes!

Method 2: Using an augmented matrix

Example: "Transform left side to identity matrix to reveal the inverse"

$$
\begin{aligned}
& {\left[\begin{array}{cc|cc}
1 & 0 & \frac{5}{17} & \frac{-2}{17} \\
0 & 1 & \frac{1}{17} & \frac{3}{17}
\end{array}\right]} \\
& \text { I } \quad A^{-1} \\
& {\left[\begin{array}{cc|cc}
1 & 0 & \frac{5}{17} & \frac{-2}{17} \\
0 & 1 & \frac{1}{17} & \frac{3}{17}
\end{array}\right]}
\end{aligned}
$$

> Note and compare with the above formula:
> determinant of $A=17$ and, the transformed matrix is $\left[\begin{array}{cc}5 & -2 \\ 1 & 3\end{array}\right]$
> And, the result of A^{-1} is also $\left[\begin{array}{cc}\frac{5}{17} & \frac{-2}{17} \\ \frac{1}{17} & \frac{3}{17}\end{array}\right]$

Definition: A single number obtained from a matrix, revealing some of the matrix properties.

$$
\left|\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right|=\mathrm{ad}-\mathrm{bc} \quad\left|\begin{array}{lll}
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\mathrm{~d} & \mathrm{e} & \mathrm{f} \\
\mathrm{~g} & \mathrm{~h} & \mathrm{i}
\end{array}\right|=(\mathrm{aei}+\mathrm{bfg}+\mathrm{dhc})-(\mathrm{ceg}+\mathrm{fha}+\mathrm{bbd})
$$

Even though the symbols are similar, a determinant is not an absolute value.
Notice the diagonal and criss-cross patterns in these examples:

$$
\begin{aligned}
& \left|\begin{array}{ll}
4 & 5 \\
2 & 6
\end{array}\right|=(4 \times 6)-(5 \times 2)=14 \\
& \left|\begin{array}{ll}
4 & 5 \\
2 & 6
\end{array}\right|\left|\begin{array}{ll}
4 & 5 \\
2 & 6
\end{array}\right| \quad\left|\begin{array}{ll}
3 & -1 \\
4 & -1
\end{array}\right|=3 \times(-1)-(-1 \times 4)=-3-(-4)=1 \\
& \left|\begin{array}{rr}
-2 & 1 \\
4 & 2
\end{array}\right|=-4-(4)=-8 \quad\left|\begin{array}{rc}
1 / 2 & 4 \\
2 & 16
\end{array}\right|=8-8=0 \\
& \begin{array}{c}
\left|\begin{array}{ccc}
1 & 3 & -4 \\
2 & 1 & 0 \\
5 & 4 & 6
\end{array}\right|=(1 \times 1 \times 6)+(3 \times 0 \times 5)+(2 \times 4 \times(-4))-[(-4 \times 1 \times 5)+(0 \times 4 \times 1)+(6 \times 3 \times 2)] \\
6+0+(-32)-[-20+0+36]=-42
\end{array} \\
& \left.\left|\begin{array}{ccc}
1 & 3 & -4 \\
2 & 1 & 0 \\
5 & 4 & 6
\end{array}\right|\left|\begin{array}{ccc}
1 & 3 & -4 \\
2 & 1 & 0 \\
5 & 4 & 6
\end{array}\right| \begin{array}{ccc}
1 & 3 & -4 \\
2 & 1 & 0 \\
5 & 4 & 6
\end{array} \right\rvert\,
\end{aligned}
$$

The determinant of a larger matrix can be found using method of "expansion by cofactors".

Example: Find the determinant:

$$
\left\lvert\, \begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right.
$$

Method 1: break into separate 2×2 matrices...
$\left|\begin{array}{ccc}1 & 2 & 3 \\ 4 & 5 & 6 \\ 4 & 8 & 9\end{array}\right| \quad\left|\begin{array}{ccc}1 & 2 & -3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right| \quad\left|\begin{array}{ccc}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & & \\ 7 & 8 & 9\end{array}\right|$

$$
\begin{aligned}
& \left.1\left|\begin{array}{ll}
5 & 6 \\
8 & 9
\end{array}\right|-\begin{array}{cc}
4 & 6 \\
7 & 9
\end{array} \right\rvert\, \\
& 1 \times(-3) \\
& 2 \times(-6)
\end{aligned}
$$

Method 2: copy and cross

$$
\left.\begin{array}{|llllll}
1 & 2 & 3 & 1 & 2 & 3 \\
4 & 5 & 6 & 4 & 5 & 6 \\
7 & 8 & 9 & 7 & 8 & 9
\end{array} \right\rvert\,
$$

What is it? A method of solving linear systems using determinants.
The system must be a "square" (e.g. 3 equations, 3 variables; 2 equations, 2 variables)
The determinant of the coefficients must not equal zero (i.e. the matrix of the coefficients would be invertible)
2×2 example:

$$
\begin{aligned}
& 3 x+4 y=14 \\
& 2 x-6 y=5
\end{aligned}
$$

(find determinant of the coefficients)
$D=\left|\begin{array}{cc}3 & 4 \\ 2 & -6\end{array}\right|=-18-8=-26$

$$
x=\frac{D_{x}}{D}=\frac{-104}{-26}=4 \quad y=\frac{D_{y}}{D}=\frac{-13}{-26}=\frac{1}{2}
$$

$$
\begin{aligned}
& 3 x+4 y=14 \\
& 2 x-6 y=5
\end{aligned}
$$

("replace the x column with the solution column")

$$
\begin{aligned}
& 3 x+4 y=14 \\
& 2 x-6 y=5
\end{aligned}
$$

("replace the y column with the solution column")

$$
D_{y}=\left|\begin{array}{cc}
3 & 14 \\
2 & 5
\end{array}\right|=-13
$$

$$
\left(4, \frac{1}{2}\right)
$$

3×3 example:

$$
\begin{aligned}
2 x-3 z & =-13 \\
x+4 y+7 z & =28 \\
3 x-2 y+4 z & =27
\end{aligned}
$$

find "solution" determinant:

$$
\begin{aligned}
\mathrm{D}= & \left|\begin{array}{ccc}
2 & 0 & -3 \\
1 & 4 & 7 \\
3 & -2 & 4
\end{array}\right|=\begin{array}{c}
(2 \times 4 \times 4)+(0 \times 7 \times 3)+(-3 \times 1 \times-2)-[(-3 \times 4 \times 3)+(0 \times 1 \times 4)+(2 \times 7 \times(-2)] \\
=32+0+6-[-36+0+(-28)]=102
\end{array}
\end{aligned}
$$

find " x determinant" (replace x coefficients with solution column)
$\mathrm{x}=\frac{\mathrm{D}_{\mathrm{x}}}{\mathrm{D}}=\frac{102}{102}=1 \quad \mathrm{D}_{\mathrm{x}}=\left|\begin{array}{rrr}-13 & 0 & -3 \\ 28 & 4 & 7 \\ 27 & -2 & 4\end{array}\right|=(-13 \times 4 \times 4)+(0 \times 7 \times 27)+(-3 \times 28 \times(-2))-[(-3 \times 4 \times 27)+(0)+(-13 \times 7 \times(-2))]$
$\mathrm{y}=\frac{\mathrm{D}}{\mathrm{y}} \mathrm{D}=\frac{-204}{102}=-2 \quad$ find "y determinant" $\begin{gathered}\text { (replace } \mathrm{y} \text { coefficients } \\ \text { with solution column) }\end{gathered}$
$\mathrm{z}=\frac{\mathrm{D}_{\mathrm{z}}}{\mathrm{D}}=\frac{510}{102}=5 \quad \mathrm{D}_{\mathrm{y}}=\left|\begin{array}{rrr|}2 & -13 & -3 \\ 1 & 28 & 7 \\ 3 & 27 & 4\end{array}\right|=(2 \times 28 \times 4)+(-13 \times 7 \times 3)+(1 \times 27 \times(-3))-[(-3 \times 28 \times 3)+(2 \times 7 \times 27)+(1 \times 4 \times(-13)]$
$(1,-2,5)$
find " z determinant" (replace z coefficients with solution column)
to check solution, plug answer into linear equations
$\mathrm{D}_{\mathrm{Z}}=\left|\begin{array}{rrr}2 & 0 & -13 \\ 1 & 4 & 28 \\ 3 & -2 & 27\end{array}\right|=\left(\begin{array}{c}(2 \times 4 \times 27)+(0)+(1 \times(-2) \times(-13)-[(-13 \times 4 \times 3)+(0)+(2 \times 28 \times(-2)]= \\ 216+0+26-[-156+0-112]=510\end{array}\right.$

Solving Linear Systems using the inverse matrix
Suppose you need to solve $20 \mathrm{x}=40$
If you multiply both sides by the multipicative inverse (reciprocal) of 20 , you reveal the solution:

$$
\begin{aligned}
\frac{1}{20} \cdot 20 \mathrm{x} & =\frac{1}{20} \cdot 40 \\
x & =2
\end{aligned}
$$

The same approach works with matrices and linear systems.

Suppose A is a square matrix that represents the coefficients X is a matrix that represents the variables B is a matrix that represents the solutions

$$
\text { Then, } \quad \mathrm{AX}=\mathrm{B}
$$

Now, suppose A^{-1} is the inverse of A.
Since $A X=B$,
then, $A^{-1} A X=A^{-1} B$

$$
\begin{aligned}
& \mathrm{A}^{-1} \mathrm{~A}=\mathrm{I} \text { (identity matrix) } \\
& \text { and, } \mathrm{IX}=\mathrm{X}
\end{aligned}
$$

Therefore, $\quad X=A^{-1} B$

$$
* * \text { Important } \quad \mathrm{X}=\mathrm{A}^{-1} \mathrm{~B}
$$

The inverse matrix is left of the B matrix.

$$
\begin{aligned}
& \text { Example: } \begin{array}{l}
4 \mathrm{x}+3 \mathrm{y}=23 \\
\mathrm{x}-6 \mathrm{y}=-28 \\
\mathrm{~A}=\left[\begin{array}{cc}
4 & 3 \\
1 & -6
\end{array}\right] \quad \mathrm{X}=\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right] \quad \mathrm{B}=\left[\begin{array}{r}
23 \\
-28
\end{array}\right]
\end{array} .
\end{aligned}
$$

Notice: $\mathrm{AX}=\mathrm{B}$
Find A^{-1}

$$
\operatorname{det} A=\left|\begin{array}{rr}
4 & 3 \\
1 & -6
\end{array}\right|=-24-3=-27
$$

("Transpose the matrix")

$$
\left[\begin{array}{cc}
4 & 3 \\
1 & -6
\end{array}\right] \underset{\text { ("swap }}{\underset{\text { and d") }}{ }}\left[\begin{array}{cc}
-6 & 3 \\
1 & 4
\end{array}\right] \underset{\substack{(\text { "negative } \\
\mathrm{b} \text { and } \mathrm{c} \text { ") }}}{\xrightarrow{(1)}}\left[\begin{array}{cc}
-6 & -3 \\
-1 & 4
\end{array}\right]
$$

$$
A^{-1}=\frac{1}{-27}\left[\begin{array}{cc}
-6 & -3 \\
-1 & 4
\end{array}\right]
$$

$$
\mathrm{AX}=\mathrm{B}
$$

$$
\text { then, } A^{-1} A X=A^{-1} B
$$

$$
\begin{gathered}
\mathrm{A}^{-1} \mathrm{~A}
\end{gathered} \mathrm{X} \quad \begin{gathered}
\mathrm{A}^{-1}
\end{gathered} \begin{gathered}
\mathrm{B} \\
{\left[\begin{array}{cc}
2 / 9 & 1 / 9 \\
1 / 27 & -4 / 27
\end{array}\right]\left[\begin{array}{cc}
4 & 3 \\
1 & -6
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right]=\left[\begin{array}{cc}
2 / 9 & 1 / 9 \\
1 / 27 & -4 / 27
\end{array}\right]\left[\begin{array}{c}
23 \\
-28
\end{array}\right]}
\end{gathered}
$$

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y}
\end{array}\right]=\left[\begin{array}{l}
18 / 9 \\
135 / 27
\end{array}\right]
$$

$$
\left.\begin{array}{ccc}
5 x+4 y=12 & \mid c c \\
-10 x-8 y=-24 & \mid-10 & -8
\end{array} \right\rvert\,=0 \quad \begin{gathered}
\text { (infinite number } \\
\text { of solutions) }
\end{gathered}
$$

Practice Quiz \rightarrow

Matrix Inverse and Determinant Quiz

Find the determinant of the following:
a) $\left|\begin{array}{ll}5 & 8 \\ 6 & 10\end{array}\right|=$
b) $\left|\begin{array}{rr}-3 & -1 \\ 9 & 2\end{array}\right|=$
c) $\left|\begin{array}{ccc}3 & 4 & -1 \\ 0 & 5 & 6 \\ -2 & -3 & 1 / 2\end{array}\right|=$
d) $\left|\begin{array}{ccc}5 & -1 & 3 \\ 2 & 4 & 1\end{array}\right|=$
e) $\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|=$

Find the inverse of the following:
a) Use the formula method:
$A=\left[\begin{array}{rr}4 & -2 \\ 3 & 1\end{array}\right] \quad A^{-1}=$
b) Use the augmented matrix method:
$\mathrm{B}=\left[\begin{array}{ll}2 & -3 \\ 1 & -1\end{array}\right] \quad \mathrm{B}^{-1}=$
c) Find the determinant of matrix C ; What is the inverse C^{-1} ?

$$
C=\left[\begin{array}{ll}
6 & -2 \\
3 & -1
\end{array}\right]
$$

Use Cramer's Rule to solve the following linear system:

```
4x+7y=43
5x-y=5
```

Use Cramer's Rule to find x :
$3 x+5 y=11$
$-2 x+y-3 z=4$
$x+10 z=17$

Use an augmented matrix to solve the following system:

$$
\begin{aligned}
7 x+3 y+2 z & =6 \\
2 x-2 y+10 z & =15 \\
x+5 y-12 z & =-19
\end{aligned}
$$

$\left|\begin{array}{cc}2 & \mathrm{x} \\ 3 & -2\end{array}\right|=11 \quad\left|\begin{array}{ll}\mathrm{x} & 8 \\ \mathrm{x} & \mathrm{x}\end{array}\right|=20$
$\left|\begin{array}{cc}\mathrm{a} & -1 \\ \mathrm{~b} & 2\end{array}\right|=1 \quad\left|\begin{array}{cc}\mathrm{b} & \mathrm{a} \\ 5 & 7\end{array}\right|=-107$

Solve using Cramer's Rule

$$
2 x-3 y=5
$$

$$
-8 x+12 y=2
$$

$x+5 y=14$
$3 x+15 y=42$

Use Cramer's rule to solve the following system:
$\mathrm{a}-2 \mathrm{~b}-3 \mathrm{c}=-1$
$2 \mathrm{a}+\mathrm{b}+\mathrm{c}=6$
$\mathrm{a}+3 \mathrm{~b}-2 \mathrm{c}=13$

Solve the system using $A \cdot X=B$ method...

$$
-3 x+y=-3
$$

$$
9 x-5 y=3
$$

Given $\left|\begin{array}{ccc}\mathrm{a} & 3 & -2 \\ 2 & 5 & 4 \\ 3 & -1 & 2 \mathrm{a}\end{array}\right|=184 \quad$ Find a .

Find the determinant of the following:
a) $\left\lvert\, \begin{aligned} & 5 \times 10 \\ & 6\end{aligned}=50-48=2\right.$
b) $\begin{aligned}\left|\begin{array}{rr}-3 & -1 \\ 9 & 2\end{array}\right| & =(-3 \times 2)-(-1 \times 9) \text { c) } \\ & =-6-(-9)=3\end{aligned}\left|\begin{array}{ccc}3 & 4 & -1 \\ 0 & 5 & 6 \\ -2 & -3 & 1 / 2\end{array}\right|=\begin{aligned} & (3 \times 5 \times 1 / 2)+(4 \times 6 \times-2)+(-1 \times 0 \times-3) \\ & -[(-1 \times 5 \times-2)+(4 \times 0 \times 1 / 2)+(3 \times 6 \times-3)]\end{aligned}$
$15 / 2+(-48)+0-[10+0+(-54)]$ $-401 / 2+44=31 / 2$
d) $\left|\begin{array}{rrr}5 & -1 & 3 \\ 2 & 4 & 1\end{array}\right|=\varnothing$
e) $\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|=1$

It's not a square matrix; determinant cannot be calculated!

Find the inverse of the following:
a) Use the formula method: $\quad \operatorname{det} A=\left|\begin{array}{cc}4 & -2 \\ 3 & 1\end{array}\right|=\left(\begin{array}{lll}4 \times 1\end{array}\right)+(-2 \times 3)=10$
$A=\left[\begin{array}{rr}4 & -2 \\ 3 & 1\end{array}\right] \quad A^{-1}=\left[\begin{array}{ll}\frac{1}{10} & \frac{1}{5} \\ \frac{-3}{10} & \frac{2}{5}\end{array}\right]$
"transform A": $\left[\begin{array}{ll}1 & \\ & 4\end{array}\right]\left[\begin{array}{l}2 \\ -3\end{array}\right] \longrightarrow\left[\begin{array}{rr}1 & 2 \\ -3 & 4\end{array}\right]$
(switch) (opposites)
to check your answer, confirm that

$$
\mathrm{AA}^{-1}=\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|
$$

b) Use the augmented matrix method:

$$
\text { inverse is } \frac{1}{10}\left[\begin{array}{cc}
1 & 2 \\
-3 & 4
\end{array}\right]=\left[\begin{array}{ll}
\frac{1}{10} & \frac{1}{5} \\
\frac{-3}{10} & \frac{2}{5}
\end{array}\right]
$$

$$
\begin{aligned}
& \left\lvert\, \begin{array}{l}
\mathrm{R} 1+\mathrm{R} 2 \\
\text { (replace R1) }
\end{array}\right. \\
& \text { note: }\left[\begin{array}{ll}
2 & -3 \\
1 & -1
\end{array}\right]\left[\begin{array}{ll}
-1 & 3 \\
-1 & 2
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

c) Find the determinant of matrix C ; What is the inverse C^{-1} ?

$$
\mathrm{C}=\left[\begin{array}{ll}
6 & -2 \\
3 & -1
\end{array}\right] \quad \operatorname{det} \mathrm{C}=\left|\begin{array}{cc}
6 & -2 \\
3 & -1
\end{array}\right|=(6 \times-1)-(-2 \times 3)=0
$$

Since the determinant $=0$, the matrix is non-invertible.
There is NO C^{-1}

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Use Cramer's Rule to solve the following linear system:
$4 x+7 y=43$
$5 x-y=5$
$\mathrm{D}=\left|\begin{array}{cc}4 & 7 \\ 5 & -1\end{array}\right|=-39$
$\mathrm{x}=\frac{\mathrm{D}_{\mathrm{x}}}{\mathrm{D}}=\frac{-78}{-39}=2$
$D_{X}=\left|\begin{array}{cc}43 & 7 \\ 5 & -1\end{array}\right|=-78$
$y=\frac{D_{y}}{D}=\frac{-195}{-39}=5$
$(2,5)$

$$
D_{y}=\left|\begin{array}{cc}
4 & 43 \\
5 & 5
\end{array}\right|=-195
$$

Check: plug x and y into the linear equations

Use Cramer's Rule to find x :

$$
\begin{aligned}
& 3 x+5 y=11 \quad \text { (To find } x \text {, we only need } D \text { and } D_{x} \text {) } \\
& -2 x+y-3 z=4 \\
& x+10 z=17 \\
& \mathrm{D}=\left|\begin{array}{ccc}
3 & 5 & 0 \\
-2 & 1 & -3 \\
1 & 0 & 10
\end{array}\right|=(3 \times 1 \times 10)+(5 \times-3 \times 1)+0-[(0)+(5 \times(-2) \times 10)+(0)]= \\
& x=\frac{D_{x}}{D}=\frac{-345}{115}=(-3) \\
& D_{X}=\left|\begin{array}{ccc}
11 & 5 & 0 \\
4 & 1 & -3 \\
17 & 0 & 10
\end{array}\right|=(11 \times 1 \times 10)+(5 \times(-3) \times 17)+0-[(0)+(5 \times 4 \times 10)+(0)]=
\end{aligned}
$$

Use an augmented matrix to solve the following system:

$$
\begin{aligned}
7 x+3 y+2 z & =6 \\
2 x-2 y+10 z & =15 \\
x+5 y-12 z & =-19
\end{aligned}
$$

$$
x=2 \quad y=-3 \quad z=1 / 2
$$

AND

$$
\begin{array}{cc}
\left|\begin{array}{cc}
2 & \mathrm{x} \\
3 & -2
\end{array}\right|=11 & \left|\begin{array}{ll}
\mathrm{x} & 8 \\
\mathrm{x} & \mathrm{x}
\end{array}\right|=20 \\
2(-2)-x(3)=11 & x^{2}-8 x=20 \\
-4-3 x=11 & x^{2}-8 x-20=0 \\
x=-5 & (x-10)(x+2)=0 \\
x & x=-2,10
\end{array}
$$

位
$\left|\begin{array}{cc}\mathrm{a} & -1 \\ \mathrm{~b} & 2\end{array}\right|=1 \quad\left|\begin{array}{ll}\mathrm{b} & \mathrm{a} \\ 5 & 7\end{array}\right|=-107$
$2 \mathrm{a}--1 \mathrm{~b}=1$
$7 \mathrm{~b}-5 \mathrm{a}=-107$$\left\{\begin{array}{l}2 \mathrm{a}+\mathrm{b}=1 \\ -5 \mathrm{a}+7 \mathrm{~b}=-107 \\ -14 \mathrm{a}-7 \mathrm{~b}=-7\end{array}\right.$
$-19 \mathrm{a}=-114$

$$
\mathrm{a}=6 \quad \mathrm{~b}=-11
$$

Solve using Cramer's Rule

$2 \mathrm{x}-3 \mathrm{y}=5$
$-8 x+12 y=2$
$\mathrm{D}_{\mathrm{x}}=\left|\begin{array}{cc}5 & -3 \\ 2 & 12\end{array}\right|=66 \quad \mathrm{D}_{\mathrm{y}}=\left|\begin{array}{cc}2 & 5 \\ -8 & 2\end{array}\right|=44$

$$
\mathrm{D}=\left|\begin{array}{cc}
2 & -3 \\
-8 & 12
\end{array}\right|=0 \quad \begin{array}{|c}
\text { Since the determinant is } 0, \\
\text { there is no solution!! } \\
\text { (inconsistent system) }
\end{array} \quad \frac{\mathrm{D}_{\mathrm{x}}}{\mathrm{D}} \text { is undefined.. } \quad \frac{\mathrm{D}_{\mathrm{y}}}{\mathrm{D}} \text { is undefined.. }
$$

$x+5 y=14$
$3 x+15 y=42$

$$
\mathrm{D}=\left|\begin{array}{cc}
1 & 5 \\
3 & 15
\end{array}\right|=0 \quad \mathrm{D}_{\mathrm{x}}=\left|\begin{array}{cc}
14 & 5 \\
42 & 15
\end{array}\right|=0 \quad \mathrm{D}_{\mathrm{y}}=\left|\begin{array}{cc}
1 & 14 \\
3 & 42
\end{array}\right|=0
$$

Same equations!
(consistent and dependent system)
Use Cramer's rule to solve the following system:

$$
\begin{aligned}
& a-2 b-3 c=-1 \\
& 2 a+b+c=6 \\
& a+3 b-2 c=13 \\
D= & \left|\begin{array}{lll}
1 & -2 & -3 \\
2 & 1 & 1 \\
1 & 3 & -2
\end{array}\right|=-30
\end{aligned}
$$

"Replace each respective column with the constant column"

$$
\begin{aligned}
& \left.\mathrm{D}_{\mathrm{x}}=\left|\begin{array}{ccc|}
\hline-1 & -2 & -3 \\
6 & 1 & 1 \\
13 & 3 & -2
\end{array}\right|=-60 \quad \mathrm{D}_{\mathrm{y}}=\left|\begin{array}{ccc|c}
1 & -1 & -3 \\
2 & 6 & 1 \\
1 & 13 & -2
\end{array}\right|=-90 \quad \mathrm{D}_{\mathrm{z}}=\begin{array}{ccc|c}
1 & -2 & -1 \\
2 & 1 & 6 \\
1 & 3 & 13
\end{array} \right\rvert\,=30 \\
& \frac{\mathrm{D}_{\mathrm{x}}}{\mathrm{D}}=2 \\
& \frac{D_{y}}{D}=3 \\
& \frac{D_{Z}}{D}=-1
\end{aligned}
$$

$-3 x+y=-3$
$9 x-5 y=3$$\quad$ Step 1: Identify the matrices $\quad A=\left[\begin{array}{cc}-3 & 1 \\ 9 & -5\end{array}\right] \quad X=\left[\begin{array}{l}x \\ y\end{array}\right] \quad B=\left[\begin{array}{c}-3 \\ 3\end{array}\right]$

Step 2: Find the inverse of A
Method 1: Apply the formula

$$
\begin{aligned}
& \frac{1}{|\mathrm{~A}|}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]=\left[\begin{array}{rr:ll}
-3 & 1 & 1 & 0 \\
9 & -5 & 0 & 1
\end{array}\right] \quad \text { 3R1 added to R2 } \\
& \frac{1}{\left|\begin{array}{cc}
-3 & 1 \\
9 & -5
\end{array}\right|}\left[\begin{array}{ll}
-5 & -1 \\
-9 & -3
\end{array}\right]=\frac{1}{6}\left[\begin{array}{ll}
-5 & -1 \\
-9 & -3
\end{array}\right] \\
& \sqrt{\eta} \\
& A^{-1}=\left[\begin{array}{cc}
\frac{-5}{6} & \frac{-1}{6} \\
\frac{-3}{2} & \frac{-1}{2}
\end{array}\right] \quad\left[\begin{array}{ccccc}
-3 & 0 & 5 / 2 & 1 / 2 \\
0 & 1 & -3 / 2 & -1 / 2
\end{array}\right]
\end{aligned}
$$

Step 3: Multiply Matrices

$$
\begin{array}{cc}
\mathrm{A} \cdot \mathrm{X}=\mathrm{B} \\
\mathrm{~A}^{-1} \mathrm{~A} \cdot \mathrm{X}=\mathrm{A}^{-1} \mathrm{~B} & \mathrm{X}=\left[\begin{array}{cc}
\frac{-5}{6} & \frac{-1}{6} \\
\mathrm{~A}^{-1} \mathrm{~A}=\mathrm{I} \begin{array}{c}
\text { (the identity } \\
\text { matrix) }
\end{array} \\
\frac{-3}{2} & \frac{-1}{2}
\end{array}\right]=\left[\begin{array}{c}
-3 \\
3
\end{array}\right]=\left[\begin{array}{l}
2 \\
3
\end{array}\right] \mathrm{x} \\
\mathrm{y}=\mathrm{A}^{-1} \mathrm{~B}
\end{array}
$$

$$
\begin{aligned}
& \text { Given }\left|\begin{array}{ccc}
a & 3 & -2 \\
2 & 5 & 4 \\
3 & -1 & 2 \mathrm{a}
\end{array}\right|=184 \quad \text { Find } \mathrm{a} . \\
& \mathrm{a}\left|\begin{array}{cc}
5 & 4 \\
-1 & 2 \mathrm{a}
\end{array}\right|-3\left|\begin{array}{cc}
2 & 4 \\
3 & 2 \mathrm{a}
\end{array}\right|+-2\left|\begin{array}{cc}
2 & 5 \\
3 & -1
\end{array}\right|=184 \\
& \begin{array}{r}
\text { simply evaluate the determinant.... }
\end{array} \\
& \mathrm{a}(10 \mathrm{a}+4)-3(4 \mathrm{a}-12)+-2(-2-15)=184 \\
& 10 \mathrm{a}^{2}+4 \mathrm{a}-12 \mathrm{a}+36+34=184 \\
& 10 \mathrm{a}^{2}-8 \mathrm{a}-114=0 \\
& 5 \mathrm{a}^{2}-4 \mathrm{a}-57=0
\end{aligned}
$$

then, solve for a....

$$
a=-3 \text { or } 19 / 5
$$

then, check your answers!

Thanks for visiting the site. (Hope it helped!)
If you have questions, suggestions, or requests, let us know.
Cheers

Also at Facebook, Google+, Pinterest, TES and TeachersPayTeachers

Mathplane Express for mobile at Mathplane.ORG

