Inverse Functions

Practice questions (with solutions)

Includes graphing, finding inverses, symmetry, cryptography, and more...

Domain, Range, and Inverse Functions

1) For the function $h(x)=\sqrt{3 x-4}$
a) find the inverse $h^{-1}(\mathrm{x})$
b) what is the domain of $h(\mathrm{x})$? the range of $h(\mathrm{x})$?
c) what is the domain of $h^{-1}(\mathrm{x})$? the range of $h^{-1}(\mathrm{x})$?
d) Graph the function $h(\mathrm{x})$, the inverse $h^{-1}(\mathrm{x})$, and the line $\mathrm{y}=\mathrm{x}$

2) Graph the inverse:

Then, verify the results algebraically...

3) $g(x)=\sqrt[3]{(x-1)}$
a) Sketch the function $g(x)$
b) Find the inverse of $g(x)$
c) What is the domain and range of $g^{-1}(\mathrm{x})$?
d) Graph $-(g(x))$

4) If $f(x)=5-2 x$, what is $f^{-1}(3)$?

Domain, Range, and Inverse Functions
5) $f(x)=x^{2}+6$
a) Find the inverse $f^{-1}(\mathrm{x})$
b) Verify the inverse -- find $f\left(f^{-1}(\mathrm{x})\right)$ and $f^{-1}(f(\mathrm{x}))$
c) What is the domain and range of $f(x)$? Of $f^{-1}(x)$? Are the "inverses" one-to-one?
d) Graph $f(\mathrm{x})$ and $f^{-1}(\mathrm{x})$

6) Fill in the blank
a)
$f(\mathrm{x})$
$f^{-1}(\mathrm{x})$
Domain $\quad(-\infty, \infty$
[8, 200]
Range \qquad
x-intercept
$(5,0)$
$(-2,0)$
y-intercept \qquad
additional point $\quad(14,-1)$
b)

$f(\mathrm{x})$		
Domain	$(-\infty, \infty \quad)$	
Range	$[11, \infty \quad)$	
x-intercept	$(4,0)$	
y-intercept	$(0,7)$	
additional point	$(7,15)$	

7) For the one-to-one function $f(x)=(x-3)^{2}+5$ where $\mathrm{x} \leq 3$ find $f^{-1}(\mathrm{x})$

SOLUTIONS - \rightarrow

SOLUTIONS

1) For the function $h(x)=\sqrt{3 x-4}$
a) find the inverse $h^{-1}(\mathrm{x})$

$$
\begin{array}{rll}
\text { for } \mathrm{y}=/ \sqrt{3 \mathrm{x}-4} & \text { switch the } \mathrm{x} \text { and } \mathrm{y} \ldots \\
\mathrm{x}=/ \sqrt{3 \mathrm{y}-4} & \begin{array}{c}
3 \mathrm{y}=\mathrm{x}^{2}+4 \\
\text { then, solve for } \mathrm{y} \ldots
\end{array} & \begin{array}{l}
\mathrm{y}=\frac{\mathrm{x}^{2}+4}{3} \\
\mathrm{x}^{2}=3 \mathrm{y}-4
\end{array} \\
h^{-1}(\mathrm{x})=\frac{\mathrm{x}^{2}+4}{3}
\end{array}
$$

b) what is the domain of $h(\mathrm{x})$? the range of $h(\mathrm{x})$? (no negatives under a radical)
domain: $x \geq \frac{4}{3}$
range: $h(x) \geq 0$
c) what is the domain of $h^{-1}(\mathrm{x})$? the range of $h^{-1}(\mathrm{x})$?
$h^{-1}(\mathrm{x})=\frac{\mathrm{x}^{2}+4}{3}$ domain: $h(\mathrm{x}) \geq 0$
Notice: the domain of $h(\mathrm{x})$ is the range of $h^{-1}(\mathrm{x})$
and, the range of $h(\mathrm{x})$ is the domain of $h^{-1}(\mathrm{x})$
where $x \geq 0$ range: $\quad x \geq \frac{4}{3}$
d) Graph the function $h(\mathrm{x})$, the inverse $h^{-1}(\mathrm{x})$, and the line $\mathrm{y}=\mathrm{x}$
2) Graph the inverse.

Then, verify the results algebraically...
method 1: since it is a line, the inverse will be a line.. therefore, we need just 2 points!
---> pick two points and "flip the coordinates"..

$$
\begin{gathered}
(0,3) \cdots(3,0) \\
(-2,-3) \cdots(---\ggg>
\end{gathered}
$$

then, draw a line throught the points...
method 2: the equation of the line is $y=3 x+3$
find the inverse: $x=3 y+3$ switch x and y

$$
\begin{array}{lr}
3 y=x-3 \\
y=\frac{x-3}{3} & \text { solve for } y \\
y=\frac{1}{3} x-1
\end{array}
$$

assume line $A: f(x)=3 x+3$
line B : $g(x)=\frac{1}{3} x-1$

$$
\begin{aligned}
f(g(x)) & =3\left(\frac{1}{3} x-1\right)+3 \\
& =x-3+3=x
\end{aligned}
$$

3) $g(x)=\sqrt[3]{(x-1)}$

SOLUTIONS
Domain, Range, and Inverse Functions
a) Sketch the function $g(x)$

b) Find the inverse of $g(x)$

$$
\begin{array}{ll}
y=(x-1)^{\frac{1}{3}} & \begin{array}{l}
\text { write in exponential form; switch } \\
x \text { and } y
\end{array} \\
x=(y-1)^{\frac{1}{3}} & \text { solve for } \mathrm{y}
\end{array}
$$

$$
\mathrm{x}^{3}=\mathrm{y}-1 \quad \mathrm{y}=\mathrm{x}^{3}+1 \quad \longrightarrow \quad g^{-1}(\mathrm{x})=\mathrm{x}^{3}+1
$$

c) What is the domain and range of $g^{-1}(\mathrm{x})$?

> domain and range: all real numbers
d) Graph $-(g(x))$
$-g(x)=-\Lambda_{\sqrt{(x-1)}}$
note: graph is 'opposite' image
of above graph ---
it is reflected over the x-axis

x	$g(\mathrm{x})$	$-g(\mathrm{x})$
-26	-3	3
-7	-2	2
0	-1	1
1	0	0
2	1	-1
9	2	-2
28	3	-3

4) If $f(x)=5-2 x$, what is $f^{-1}(3)$?

$$
\begin{gathered}
5-2 \mathrm{x}=3 \quad \mathrm{x}=1 \\
f(1)=3 \quad \text { So, the inverse (reverse the coordinate) is }(3,1) \\
\text { answer: } 1
\end{gathered}
$$

5) $f(x)=x^{2}+6$
a) Find the inverse $f^{-1}(\mathrm{x})$

$$
\begin{aligned}
\mathrm{y} & =\mathrm{x}^{2}+6 \\
\mathrm{x} & =\mathrm{y}^{2}+6 \\
\mathrm{y}^{2} & =\mathrm{x}-6 \\
\mathrm{y} & (\text { switch the } \mathrm{x} \text { and } \mathrm{y}) \\
\mathrm{y} & =\sqrt{\mathrm{x}-6}
\end{aligned}
$$

note: since it is a function, the output is only $+\sqrt{ }$ (and not -)
b) Verify the inverse -- find $f\left(f^{-1}(\mathrm{x})\right)$ and $f^{-1}(f(\mathrm{x}))$

$$
\begin{array}{rlrl}
f(\sqrt{\mathrm{x}-6}) & =(\sqrt{\mathrm{x}-6})^{2}+6 & f^{-1}\left(\mathrm{x}^{2}+6\right) & =\sqrt{\left(\mathrm{x}^{2}+6\right)-6} \\
& =(\mathrm{x}-6)+6 & & =\sqrt{\mathrm{x}^{2}+0} \\
& =\mathrm{x} &
\end{array}
$$

c) What is the domain and range of $f(\mathrm{x})$? Of $f^{-1}(\mathrm{x})$? Are the "inverses" one-to-one?

$$
f(\mathrm{x})=\mathrm{x}^{2}+6
$$

domain: all real numbers
range: $f(x) \geq 6$
since domain of $f(\mathrm{x})$ and range of $f^{-1}(\mathrm{x})$ are different, functions are not 1-to-1
d) Graph $f(\mathrm{x})$ and $f^{-1}(\mathrm{x})$

$$
\begin{array}{c|c}
\mathrm{x} & f(\mathrm{x}) \\
\hline-3 & 15 \\
-2 & 10 \\
-1 & 7 \\
0 & 6 \\
1 & 7 \\
2 & 10 \\
3 & 15
\end{array}
$$

x	$f^{-1}(\mathrm{x})$
15	-3
10	-2
7	-1
6	0
7	1
10	2
15	3
22	4

note: the ordered pairs are reversed!

$$
f^{-1}(\mathrm{x})=\sqrt{\mathrm{x}-6}
$$

domain: $x \geq 6$ (if $x<6$, then negative under the radical sign)
range: $\mathrm{y}=f^{-1}(\mathrm{x}) \geq 0$ (the opposites are omitted to preserve the function)

a)
$f(\mathrm{x})$

Domain	$(-\infty, \infty)$
Range	$[8,200]$

x-intercept	$(5,0)$
y-intercept	$(0,-2)$

additional point $(14,-1)$
b)

	$f(\mathrm{x})$		$f^{-1}(\mathrm{x})$	
Domain	$(-\infty, \infty$)	$[11, \infty$	
Range	$[11, \infty)$		$(-\infty, \infty$	
x -intercept	(4, 0)		(7, 0)	
y-intercept	$(0,7)$		$(0,4)$	
additional point	$(7,15)$		$(15,7)$	

$[8,200]$
$(-\infty, \infty)$

$$
f^{-1}(\mathrm{x})
$$

SOLUTIONS

> | $(-2,0)$ |
| :--- |
| $(0,5)$ |

$(-1,14)$
Remember, the domain and range
swap places..
(each individual point reflects over $\mathrm{y}=\mathrm{x}$)
7) For the one-to-one function $f(x)=(x-3)^{2}+5$ where $x \leq 3$ find $f^{-1}(\mathrm{x})$
domain of $f(x):(-\infty, 3]$
range of $f(\mathrm{x}):[5, \infty)$
so, the domain of $f^{-1}(\mathrm{x}):[5, \infty)$
the range of $f^{-1}(\mathrm{x}):(-\infty, 3] \quad \begin{aligned} & \text { must restrict the range to } \\ & \text { the negative values! }\end{aligned}$

$$
x=(y-3)^{2}+5
$$

$$
x-5=(y-3)^{2}
$$

$$
\pm \sqrt{x-5}=y-3
$$

Inverses Application: Cryptography
Suppose we want to send a secret message (using an algebraic function/code)
We could establish a 1-1 function for the translation...
Example: $f(\mathrm{x})=3 \mathrm{x}+7$ where x is a number representing a letter in the alphabet...

$$
\begin{array}{r}
\mathrm{A}=1 \\
\mathrm{~B}=2 \\
\mathrm{C}=3 \\
\text { etc... }
\end{array}
$$

If we want to send the letter A , we would find $f(1)=3(1)+7=10$ and send " 10 "

Then, how would the receiver decode the message?
The receiver would input the number into the inverse function!

$$
\begin{array}{ll}
y=3 x+7 \quad \text { Find the inverse: } & x=3 y+7 \\
3 y=x-7 \\
y & y=\frac{x-7}{3} \quad \text { To decode the message, use } f^{-1}(x)=\frac{x-7}{3} \\
& f^{-1}(10)=\frac{10-7}{3}=1 \longrightarrow " A "
\end{array}
$$

Again, this works effectively (accurately), because it's a 1-1 function...
a) If I want to send the message "help", what number sequence would I send?

$$
\begin{array}{ll}
\mathrm{h}-->8 & f(8)=31 \\
\mathrm{e}-->5 & f(5)=22 \\
1--> & 12
\end{array} f(12)=43 \mathrm{l}=25
$$

b) If I received a message with the sequence $46,10,67,31$, what would it be?

$$
\begin{aligned}
& f^{-1}(46)=13 \quad-->\mathrm{m} \\
& f^{-1}(10)=1 \quad-->\mathrm{a} \\
& f^{-1}(67)=20-->\mathrm{t} \\
& f^{-1}(31)=8 \quad--\gg
\end{aligned}
$$

$$
f^{-1}(x)=\frac{x-7}{3}
$$

Thanks for visiting! (Hope it helps)
If you have questions, suggestions, or requests, let us know.
Cheers

Also, at mathplane.ORG for mobile...
And, find our stores at TeachersPayTeachers and TES.

