Graphing III

Identifying Functions

Notes, Examples, and Practice Questions (with answers)

Topics include EVEN/ODD functions, translation, transformations, and more.

Even Functions

Reflect the y -axis

$f(-\mathrm{x})=f(\mathrm{x})$
If (x, y) is a point on the function, then $(-x, y)$ is another point.

Examples: $g(x)=x^{2}$
Does $(-x)^{2}=(x)^{2}$?
YES $(-\mathrm{x})(-\mathrm{x})=(\mathrm{x})(\mathrm{x})$
If $\mathrm{x}=5, \quad(-5)^{2}=(5)^{2} \quad 25=25$
If $x=-4,(-(-4))^{2}=(-4)^{2} \quad 16=16$

symmetry over the y -axis

It has symmetry, BUT it does not reflect over the y -axis

$$
h(\mathrm{x})=(\mathrm{x}+2)^{2}
$$

Does $(-x+2)^{2}=(x+2)^{2}$?
NO $(-x+2)(-x+2) \neq(x+2)(x+2)$

$$
x^{2}-4 x+4 \quad \neq x^{2}+4 x+4
$$

$$
h(3)=25
$$

$$
h(-3)=1
$$

Odd Functions

Origin Symmetry
$f(-\mathrm{x})=-f(\mathrm{x})$
If (x, y) exists, then $(-\mathrm{x},-\mathrm{y})$ exists!

Examples:

Is $\mathrm{y}=\frac{1}{\mathrm{x}}$ an odd function?
YES, because for every (x, y), there is a $(-\mathrm{x},-\mathrm{y})$
(Notice the function does not exist at $\mathrm{x}=0$.
Yet, it still has symmetry around the origin!)

Is $f(x)=x^{3}+5$ an odd function?
NO, because $f(0)=5$
To have origin symmetry, $(0,0)$ must be a point on that function!

Is $\mathrm{y}=2 \mathrm{x}$ an odd function?
YES, it has origin symmetry
$-y=-2 x$
$(1,2) \quad(-1,-2)$
$(-2,-4) \quad(2,4)$

(A line through the origin is always odd)

Neither Odd nor Even

No symmetry or correlations

is Neither (odd nor even)

The function has rotation symmetry around $(4,0)$ (to be odd, it must have symmetry around $(0,0)$)

Determine if the functions are even, odd, or neither:
a) $x^{3}+5$
b) $x^{2}+5$
c) $(x+5)^{2}$

ODD, EVEN, or NEITHER
d) $|x+5|$
e) $|x|+5$
f) $-|x|-5$

Observation about Slope

Odd function: decreasing on interval

$$
[-4,-2]
$$

so, decreasin on interval
$[2,4]$

Even function: decreasing on interval

$$
\begin{aligned}
& {[-5,-2]} \\
& \text { so, increasing on interval } \\
& {[2,5]}
\end{aligned}
$$

Observation about relative $\mathrm{min} / \mathrm{max}$

Odd function: relative min at $(-1.2,-1.5)$ so, relative max at $(+1.2,+1.5)$

Even function: relative min at $(-1.8,-1.6)$
so, relative min at $(+1.8,-1.6)$
a) NEITHER. It looks like an odd function, but at $x=0$, the output is 5 . since it does not have origin symmetry, it is not odd.
b) EVEN. It has y-axis symmetry. And, any x has the same output as (-x). EX: $(2,9)(-2,9)(1,6)(-1,6)$
c) NEITHER. Obviously, it is not odd. (does not have origin symmetry) And, because it shifted 5 units to the left, it does not have y-axis symmetry. Test points: at $\mathrm{x}=3, \mathrm{y}=64$. but, at $\mathrm{x}=-3, \mathrm{y}=4$
d) NEITHER. $(0,5)-$ instead of $(0,0)--$ is a point (so, it can't be odd) And, because it shifts 5 units to the left, it does not have y-axis symmetry.
e) EVEN. Because the absolute value function shifts UP 5 units, the function maintains its y-axis symmetry.
Test points: at $\mathrm{x}=3, \mathrm{y}=8$ and at $\mathrm{x}=-3, \mathrm{y}=8$.
f) EVEN. Graphically, it's an absolute value function facing down and shifted 5 units down. Algebraically, the output of $-x$ would be the same as the output of x (because the absolute value immediately changes any input BEFORE the other operations)

Example: Given: $f(x)$
Transforming functions
Find: $\quad g(x)=-2 f(x-3)+1$

("stretch (or multiply) by a factor of 2")

("reflect over the x -axis")

("vertical shift up 1 unit")

Graphing and identifying transformations

Example: If the point $(-3,5)$ is on the ODD function $f(x)$, identify another point.
$(3,-5) \quad$ If a function is odd, then for every point, there is another point reflected over the origin.
Definition of 'odd function' : f(-x)=-f(x)

$$
\text { Since } f(-3)=5 \text {, then } f(-(-3))=-f(-3)
$$

$$
f(3)=-5
$$

Suppose $g(x)=-4 f\left(\frac{1}{5} x+2\right)-1$

Determine 2 points in function $g(x)$

Approach 1: Finding the 2 inputs and solving
Since we know the outputs for $f(3)$ and $f(-3)$, we'll choose those points for $g(\mathrm{x})$
where does $f\left(\frac{1}{5} \mathrm{x}+2\right)=f(3)$?

$$
\begin{aligned}
& \frac{1}{5} \mathrm{x}+2=3 \\
&=-4 f(3)-1 \\
&=-4(-5)-1=19
\end{aligned}
$$

$$
(5,19)
$$

Then, where does $f\left(\frac{1}{5} x+2\right)=f(-3)$?

$$
\begin{aligned}
\frac{1}{5} x+2=-3 \\
x=-25
\end{aligned} \quad \begin{aligned}
\text { So, we'1l use }-25: \quad g(-25) & =-4 f\left(\frac{1}{5}(-25)+2\right)-1 \\
& =-4 f(-3)-1 \\
& =-4(5)-1=-21
\end{aligned}
$$

$$
(-25,-21)
$$

Approach 2: Using transformations and translations

$$
g(\mathrm{x})=-4 f\left(\frac{1}{5} \mathrm{x}+2\right)-1
$$

Taking a point in $f(x)$,
$(-)$ reflect over the x -axis
a) vertical stretch of 4
b) horizontal expansion by 5
c) horizontal shift of 10 to the left
d) vertical shift of 1 unit down

Note: if we used another number, such as 10 , what happens?

$$
\begin{aligned}
g(10) & =-4 f\left(\frac{1}{5}(10)+2\right)-1 \\
g(10) & =-4 f(2+2)-1 \\
& =-4 f(4)-1
\end{aligned}
$$

Since we don't know what $f(4)$ equals, we can't determine that point!

Note: The order that each point is translated and transformed matters! Be careful.
(the shifts are last)

Identifying Properties and Transformations of Functions

Example: If the point $(2,7)$ is on the EVEN function $f(x)$, identify another point.
$(-2,7)$ If a function is even, then for every point, there is another point reflected over the y-axis (the function's line of symmetry is the y-axis)

Definition of 'even function' : $f(-x)=f(x)$

$$
\text { Since } f(2)=7 \text { and } f(-2)=f(2)
$$

Suppose $h(x)=\frac{1}{2} f(3-x)+5$

$$
\text { then } f(-2)=7
$$

Determine 2 points in the function $h(\mathrm{x})$

Approach 1: Finding the 2 points and solving

Since we know $f(2)$ and $f(-2)$, we'll select these points for $h(\mathrm{x})$.
In other words, where does $f(3-x)=f(2) ?$

$$
3-x=2
$$

$$
x=1
$$

And, where does $f(3-x)=f(-2)$?

So, we'll use 1: $\quad h(1)=\frac{1}{2} f(3-1)+5$

$$
\begin{aligned}
& =\frac{1}{2} f(2)+5 \quad \text { and, we know } f(2)=7 \\
& =\frac{1}{2} \cdot 7+5=17 / 2
\end{aligned}
$$

$$
\left(1, \frac{17}{2}\right)
$$

Then, we'll use 5: $h(5)=\frac{1}{2} f(3-5)+5$
$=\frac{1}{2} f(-2)+5 \quad$ and, we know from above that $f(-2)=7$
$=\frac{1}{2} \cdot 7+5=17 / 2$
$\left(5, \frac{17}{2}\right)$
Approach 2: Recognizing translations/transformations

$$
h(\mathrm{x})=\frac{1}{2} f(3-\mathrm{x})+5
$$

If we rewrite the equation: $\frac{1}{2} f(-x+3)+5$

$$
\frac{1}{2} f(-x+3)+5
$$

$$
\frac{1}{2} f(-(\mathrm{x}-3))+5
$$

Observation: Because of the vertical shift, the function $h(\mathrm{x})$ is not an 'even' function any more

	$(2,7)$	$(-2,7)$
(b) horizontal expansion is 1 (none)	$(2,7)$	$(-2,7)$
(-) horizontal reflection over y-axis	$(-2,7)$	$(2,7)$
(c) horizontal shift of 3 to the right	$(1,7)$	$(5,7)$
(a) vertical shrink (x 1/2)	$(1,7 / 2)$	$(5,7 / 2)$
(d) vertical shift of up 5	$(1,17 / 2)$	$(5,17 / 2)$

Testing the limits of endurance, these math figures will run on and on...

a) $g(x+1)$

d) $2 g(x)$

g) $g(1-x)$

b) $g(-x)$

e) $g(2 x)$

h) $-2 g(x)+3$

c) $-g(x)$

f) $g(2 x+4)$

i) $3 g\left(\frac{1}{2} \mathrm{x}\right)-1$

A) Given $y=f(x)$ Write equations to describe the following:

1) $f(x)$ is translated left 8 units and down 2 units
2) $f(x)$ is vertically stretched by a factor of 5 and shifted to the right 4 units
3) $f(x)$ is horizontally dilated by $1 / 4$ and reflected over the x-axis
4) $f(x)$ is reflected over the y-axis, vertically shrunk by $1 / 3$, and shifted up 10 units
B) Answer the following:
5) If $f(x)=-2(x+3)^{2}+4$ $g(\mathrm{x})=f(\mathrm{x}+1)-5$

What is the vertex of $g(\mathrm{x})$?
2) $h(x)$ has a domain $(3,8)$ and a range $[4,14]$.

What is the domain and range of $3 h(x+2)+1 ?$
3) $g(x)=3 f(x)+7$

$$
f(2)=5
$$

What point MUST exist in $g(\mathrm{x})$?
4) $h(x)=4 f(x+6)-10$

$$
f(2)=5
$$

What point MUST exist in $h(\mathrm{x})$?

Transformations of Functions

Domain: \qquad

Range: \qquad

Increasing interval: \qquad

Decreasing interval: \qquad

Constant interval: \qquad

If $g(\mathrm{x})=-2 f(\mathrm{x}-1)$, find the following: (optional: sketch $\mathrm{g}(\mathrm{x})$)

Practice Exercises: Identifying graphs and functions

Given $f(\mathrm{x})$ is an odd function; decreasing on the interval $[-2,0]$; a relative maximum exists at the point $(-4,7)$
a) Is the function increasing or decreasing at $x=1$?
b) Identify a relative minimum point?
c) Sketch a graph that satisfies the characteristics of $f(\mathrm{x})$

Write equations that describe each of the following graphs

What is the relative minimum of $f(\mathrm{x})$?
What is the range of $f(\mathrm{x})$?
If $g(\mathrm{x})=f(\mathrm{x})+3$, what is the relative maximum of $g(\mathrm{x})$?
What interval(s) is $g(x)$ increasing?

If $h(\mathrm{x})=-f(\mathrm{x})$, what is the relative maximum of $h(\mathrm{x})$?
What is the range of $h(x)$?
$h(\mathrm{x})=|\mathrm{x}| \quad$ Graph each of the following; determine if the function is even, odd, or neither...
$h(\mathrm{x})-4$

$-h(\mathrm{x})$

$h(2 \mathrm{x})$

1) Sketch a graph of a quadratic with a negative discriminant and no minimum.

2) Answer the questions for the following graph:

a) $(\mathrm{f}+\mathrm{g})(3)=$
b) $(f \circ g)(3)=$
c) $(g \circ f)(3)=$
d) $(f \circ f)(1)=$
e) $g(g(4))=$
f) $\mathrm{g}^{-1}(3)=$
g) $\mathrm{f}^{-1}(3)=$
h) $(\mathrm{f}-\mathrm{g})(0)=$

SOLUTIONS- -

a) $g(\mathrm{x}+1)$ shift 1 unit to the left..

d) $2 g(\mathrm{x})$ vertical dilation (stretch) by 2

g) $g(1-\mathrm{x}) \quad g(-(\mathrm{x}-1)) \quad \begin{aligned} & \text { horizontal reflection } \\ & \text { and shift right } 1 \text { unit }\end{aligned}$

Given the parent function $g(\mathrm{x})$,

graph the following transformed functions...

b) $g(-x)$ reflect (horizontally) over the y-axis

e) $g(2 x)$ horizontal compression by $1 / 2$

vertical reflection over x -axis
vertical dilation by factor of 2
h) $-2 g(x)+3$ shift up 3 units

Algebra 2 / Graphing Transformations
mathplane.com

SOLUTIONS
c) $-g(x)$ reflect (vertically) over the x-axis

f) $g(2 \mathrm{x}+4) \quad g(2(\mathrm{x}+2)) \begin{aligned} & \text { horizontal compression } \\ & \text { by } 1 / 2 \text {; shift left } 2 \text { units }\end{aligned}$

horizontal expansion by 2
i) $3 g\left(\frac{1}{2} \mathrm{x}\right)-1 \quad \begin{aligned} & \text { vertical stretch by } 3 \\ & \text { vertical shift down } 1\end{aligned}$

A) Given $\mathrm{y}=f(\mathrm{x})$ Write equations to describe the following:

1) $f(x)$ is translated left 8 units and down 2 units

SOLUTIONS

$$
f(x+8)-2
$$

2) $f(x)$ is vertically stretched by a factor of 5 and shifted to the right 4 units

$$
5 f(x-4)
$$

3) $f(x)$ is horizontally dilated by $1 / 4$ and reflected over the x-axis

$$
-f(4 x)
$$

4) $f(x)$ is reflected over the y-axis, vertically shrunk by $1 / 3$, and shifted up 10 units

$$
\frac{1}{3} f(-x)+10
$$

B) Answer the following:

1) If $f(\mathrm{x})=-2(\mathrm{x}+3)^{2}+4$

$$
g(x)=f(x+1)-5
$$

What is the vertex of $g(\mathrm{x})$?

Answer: The vertex of $f(\mathrm{x})$ is $(-3,4)$
Since $g(\mathrm{x})$ is a transformation of $f(\mathrm{x})$--- shift 1 to the left and 5 down -(translation)
2) $h(x)$ has a domain $(3,8)$ and a range $[4,14]$.

What is the domain and range of $3 h(x+2)+1 ?$

Changes "inside the function" affect left/right (i.e. domain)..

$$
(x+2) \cdots--->\text { shift to the left } 2 \text { units... } \quad \text { new domain: }(1,6)
$$

Changes "outside the function" affect up/down (i.e. range)..

$$
3 h---->\text { vertical stretch by factor of } 3 \ldots \text { new range: }[12,42]
$$

3) $g(x)=3 f(x)+7$

$$
f(2)=5
$$

What point MUST exist in $g(x)$?
since $f(2)=5$, we can use $\mathrm{x}=2$
$g(2)=3 f(2)+7$

$$
=3 \cdot 5+7
$$

$$
(2,22)
$$

4) $h(x)=4 f(x+6)-10 \quad$ What point MUST exist in $h(x)$?
$f(2)=5$ Since we know the output for $f(2)$, we must "adjust" $f(x+6)$ with a horizontal shift to the left..

$$
\text { So, we'll let } x=-4
$$

Then, we have a vertical stretch/multiplier of $4 \ldots$ So, the output of 5 becomes 20 ..

And, we have a vertical shift of 10 units down... So, the output of 20 becomes $10 \ldots$
Therefore, the point $(-4,10)$ MUST exist...

Transformations of Functions
SOLUTIONS

Domain: $[\underline{[0,7]}$
Range: $\quad[-1,3]$

Increasing interval: $\quad(0,2)$
Decreasing interval: $\quad(5,7)$

Constant interval: $\quad(2,5)$

If $g(\mathrm{x})=-2 f(\mathrm{x}-1)$, find the following:
(optional: sketch $\mathrm{g}(\mathrm{x})$)

Domain: $[1,8]$
Range: $\quad[-6,2]$
Increasing interval: $\quad \underline{(6,8)}$
Decreasing interval: $\quad(1,3)$
Constant interval: $\quad(3,6)$

Transformation:	horizontal shift to the right 1 unit vertical stretch by factor of 2 and reflection over the a-axis

Given $f(\mathrm{x})$ is an odd function; decreasing on the interval $[-2,0]$; a relative maximum exists at the point $(-4,7)$
a) Is the function increasing or decreasing at $\mathrm{x}=1$?

Decreasing
b) Identify a relative minimum point? Since it's an odd function, it has origin symmetry. If $(-4,7)$ is a relative max, then, $(4,-7)$ is a relative min.
c) Sketch a graph that satisfies the characteristics of $f(\mathrm{x})$

This sketch is decreasing $[-2,0]$, has relative
maximum at $(-4,7)$, and passes through $(0,0)$ maximum at $(-4,7)$, and passes through $(0,0)$

Write equations that describe each of the following graphs

Absolute value function facing down, shifted 2 units to the right and 3 units up.... $|y=-|x-2|+3$
abs. value: $y=a|x-h|+k$

quadratic function: x^{2}
shifted left 2 units: $(x+2)^{2}$
shifted left 2 units: $(x+2)$
graph represents $1 / 2$ of output: $\frac{1}{2}(x+2)^{2}$

Square root function shifted up 2 units...
test points to verify:
$(0,2)$
$(1,3)$
$(4,4)$

absolute value reflected over y-axis (negative)

$$
\mathrm{y}=\sqrt{(-\mathrm{x})}
$$

SOLUTIONS

The following is a graph of $f(\mathrm{x})$ on the interval $[-8,10]$

$h(\mathrm{x})=|\mathrm{x}| \quad$ Graph each of the following; determine if the function is even, odd, or neither...
$h(\mathrm{x})-4$ EVEN

$-h(\mathrm{x})$ EVEN

What is the relative minimum of $f(\mathrm{x})$? $\quad(3,1)$
What is the range of $f(x)$? $[1,6] \quad$ all the y values If $g(\mathrm{x})=f(\mathrm{x})+3$, what is the relative maximum of $g(\mathrm{x})$? $(-4,9)$
What interval(s) is $g(x)$ increasing? $\quad[-8,-4)$ and $(3,10]$
If $h(\mathrm{x})=-f(\mathrm{x})$, what is the relative maximum of $h(\mathrm{x})$?
What is the range of $h(x)$?
$(3,-1)$
$[-6,-1]$

1) Sketch a graph of a quadratic with a negative discriminant and no minimum.

While there is a maximum (at the vertex), there is no minimum. And, since the quadratic/parabola does not intersect the x -axis, it has no zeros (and must have a negative discriminant)

2) Answer the questions for the following graph:

a) $(\mathrm{f}+\mathrm{g})(3)=\mathrm{f}(3)+\mathrm{g}(3)=-4+6=2$
b) $(f \circ g)(3)=\quad g(3)=6$ and $f(6)-4$
c) $(\mathrm{g} \circ \mathrm{f})(3)=\mathrm{f}(3)=-4$ and then $\mathrm{g}(-4)=-1$
d) $(f \circ f)(1)=f(1)=-4$ and then $f(-4)=-4$
e) $g(g(4))=\quad g(4)=7$ and then $g(7)=10$
f) $\mathrm{g}^{-1}(3)=\quad \mathrm{g}$ of what number equals $3 "$?

0 (because $\mathrm{g}(0)=3$)
g) $f^{-1}(3)=$ since no input into $f(x)$ would produce 3 , there is no solution ϕ
h) $(\mathrm{f}-\mathrm{g})(0)=\mathrm{f}(0)-\mathrm{g}(0)=-4-3=-7$

Thanks for visiting the site. (Hope it helped!)
If you have questions, suggestions, or requests, let us know..
Cheers.

Also, Mathplane stores at TeachersPayTeachers and TES

One more question: Even, Odd, or Neither?

$$
\sqrt{x^{2}+6}
$$

Even, Odd, or Neither?

$/ \sqrt{x^{2}+6}$

Even!

Ordinarily, square root functions are neither (because the negative side isn't part of the domain). But, in this case, all real numbers are in the domain... Then, there is symmetry over the y-axis.

$$
f(-x)=\sqrt{(-x)^{2}+6}=\sqrt{x^{2}+6}=f(x)
$$

