# Geometry Review 002 Questions 

## (With solutions)



Topics include Pythagorean Theorem, sector area, perimeter, polygons, circles, similarity, and more.

## Geometry Review Test 2

1) The sector area of a circle is $3 \mathrm{~cm}^{2}$. And, the perimeter of the sector is 7 cm . What is the (possible) length(s) of the radius?
2) Given: Area of square $A B C D=49$ sq. feet

$$
\begin{aligned}
& \overline{\mathrm{AF}} \perp \overline{\mathrm{DE}} \\
& \overline{\mathrm{EF}} \| \overline{\mathrm{AD}} \\
& \overline{\mathrm{EM}} \cong \overline{\mathrm{FM}}
\end{aligned}
$$

a) What is the area of semi-circle $\widehat{\mathrm{BC}}$ ?

b) What is the length of $\overline{\mathrm{AM}}$ ?
3) Given $\overline{\mathrm{AM}}=\overline{\mathrm{MD}}=\overline{\mathrm{DA}}=10$
a) What is the perimeter of rectangle $A B C D$ ?
b) What is the area of $\triangle \mathrm{DMC}$ ?

4) Given Figure A (rectangle inscribed in a rectangle):
a) What is the perimeter of the outer rectangle?
(Hint: similar triangles \& proportions)
Figure A

b) What is the area of the inner rectangle?
(Hint: "encasement" or pythagorean theorem)
5) In a kite, the ratio of the diagonals is $3: 4$

If the area is 150 square feet, what is the length of the larger diagonal?
6) A picture frame is shaped as a heptagon. The measure of the top interior angle is $126^{\circ}$. The remaining interior angles are congruent to each other. What is the measure of each remaining interior angle?
7) What is the perimeter of the triangle?

8) Given: Diameter $\overline{\mathrm{AD}}=18$

Tangent segment is 40
Find: the length of $\overline{\mathrm{AB}}$

9) Given: ABC is an isosceles triangle inscribed in the circle where $\overline{\mathrm{AB}} \stackrel{\bumpeq}{=} \overline{\mathrm{AC}}$

$$
\begin{aligned}
& \overline{\mathrm{AF}}=6 \\
& \overline{\mathrm{ED}}=1
\end{aligned}
$$

Find: a) the radius of the circle
b) the perimeter of the triangle



## SOLUTIONS - $\rightarrow$

1) The sector area of a circle is $3 \mathrm{~cm}^{2}$. And, the perimeter of the sector is 7 cm . What is the (possible) length(s) of the radius?
Step 1: Draw the figure; label the parts


Step 2: List measurements and formulas

$$
\begin{aligned}
& \text { Sector Area }=\frac{\ominus}{360} \pi \mathrm{r}^{2}=3 \mathrm{~cm}^{2} \\
& \begin{aligned}
\text { Arc Length }=\frac{\ominus}{360} 2 \pi r=\mathrm{s}
\end{aligned} \\
& \text { Perimeter of sector }=\mathrm{r}+\mathrm{r}+\mathrm{s} \\
& \\
& =2 \mathrm{r}+\mathrm{s}=7
\end{aligned}
$$

Step 3: Combine formulas and use algebra to find missing variables.

$$
\begin{aligned}
& \frac{\rho}{360}=\frac{3 \mathrm{~cm}^{2}}{\pi \mathrm{r}^{2}} \quad \text { (from sector area) } \\
& \frac{\ominus}{360}=\frac{\mathrm{s}}{2 \mathbb{T} \mathrm{r}} \quad \text { (from arc length) } \\
& \frac{3 \mathrm{~cm}^{2}}{\pi \mathrm{r}^{2}}=\frac{\mathrm{s}}{2 \pi \mathrm{r}} \quad \text { (substitution) } \\
& \frac{3 \mathrm{~cm}^{2}}{\mathrm{r}}=\frac{\mathrm{s}}{2} \quad \begin{array}{l}
\text { (multiply both by } \uparrow \mathrm{T} \mathrm{r} \text { ) } \\
\text { (multiply both by 2) }
\end{array} \\
& \frac{6 \mathrm{~cm}^{2}}{\mathrm{r}}=\mathrm{s}
\end{aligned}
$$

Step 4: Place $s$ into perimeter formula to find $r$

$$
\begin{aligned}
& 2 \mathrm{r}+\mathrm{s}=7 \\
& 2 \mathrm{r}+\frac{6 \mathrm{~cm}^{2}}{\mathrm{r}}=7 \quad \text { (substitution) } \\
& 2 \mathrm{r}^{2}+6 \mathrm{~cm}^{2}=7 \mathrm{r} \quad \text { (multiply entire equation by } \mathrm{r} \text { ) } \\
& 2 \mathrm{r}^{2}-7 \mathrm{r}+6 \mathrm{~cm}^{2}=0 \quad \text { (Factor and solve) } \\
& (2 \mathrm{r}-3 \mathrm{~cm})(\mathrm{r}-2 \mathrm{~cm})=0 \\
& \text { radius }=1.5 \mathrm{~cm} \text { or } 2 \mathrm{~cm} \\
& \hline
\end{aligned}
$$

Step 5: Check your answer

If $\mathrm{r}=2 \mathrm{~cm}$
Area of circle $=4 \Pi \Vdash$
Circumference $=4 \pi$
$\begin{array}{cc}s=3 & \text { (because we were given } \\ 2 r+s=7)\end{array}$

Arc Length $=\frac{\ominus}{360} 2 \pi r \mathbf{r} \quad \mathrm{~s} \quad$ Sector Area $=\frac{\ominus}{360} \pi \mathrm{r}^{2}=3 \mathrm{~cm}^{2}$

$$
\begin{array}{cc}
\frac{\ominus}{360} 2 \pi(2 \mathrm{~cm})=3 & \frac{\frac{270}{\pi}}{360} \pi(2)^{2}=3 \mathrm{~cm}^{2} \\
3 & \ominus
\end{array}
$$

$$
\frac{\ominus}{360} 4 \mathrm{~cm}=\frac{3}{\Re T}
$$

$$
\frac{270}{360}(4)=3 \mathrm{~cm}
$$

$$
\theta=\frac{270}{\Re T}
$$

$$
\frac{270}{360}=\frac{3}{4}
$$

(**Then, check $\mathrm{r}=1.5$ )
2) Given: Area of square $\mathrm{ABCD}=49$ sq. feet

$$
\begin{aligned}
& \overline{\mathrm{AF}} \perp \overline{\mathrm{DE}} \\
& \overline{\mathrm{EF}} \| \overline{\mathrm{AD}} \\
& \overline{\mathrm{EM}} \cong \overline{\mathrm{FM}}
\end{aligned}
$$

a) What is the area of semi-circle $\widehat{\mathrm{BC}}$ ?


Since area of $A B C D=49$,
$\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{AD}=7$ feet

If $\overline{\mathrm{BC}}$ is 7 , then the radius of the semi-circle is 3.5

Diameter $\mathrm{BC}=7$ feet
Radius of semi-circle $=3.5$ feet

Area of a circle $=\pi r^{2}$
Area of a semi-circle $=(1 / 2) \pi r^{2}$
Area of semi-circle $\overparen{\mathrm{BC}}=(1 / 2) \pi 12.25 \cong 19.23$ square feet
b) What is the length of $\overline{\mathrm{AM}}$ ?

Since $\overline{\mathrm{EM}}=\overline{\mathrm{FM}}$
and $\angle \mathrm{M}=90^{\circ}$,
$\angle \mathrm{E}=\angle \mathrm{F}=45^{\circ}$
Since $E$ and $F$ are $45^{\circ}$
and
$\overline{\mathrm{EF}}$ is parallel to $\overline{\mathrm{AD}}$, then

$$
\angle \mathrm{A}=\angle \mathrm{D}=45^{\circ}
$$

$\triangle \mathrm{AMD}$ is a $45-45-90$ triangle!


$$
\overline{\mathrm{AM}}=\frac{7}{\sqrt{2}}=\frac{7 / \sqrt{2}}{2} \text { Feet }
$$

3) Given $\overline{\mathrm{AM}}=\overline{\mathrm{MD}}=\overline{\mathrm{DA}}=10$
a) What is the perimeter of rectangle $A B C D$ ?

We know $\overline{\mathrm{AD}}=\overline{\mathrm{BC}}=10$
Consider $\triangle \mathrm{DMC}$, to find the other 2 sides.
$\triangle \mathrm{AMD}$ is an equilateral triangle


Using properties of special right triangles, we find that $\overline{\mathrm{DC}}=10 \sqrt{3}$

So, the perimeter of $A B C D$ is $10+10 \sqrt{3}+10+10 \sqrt{3} \cong 54.64$
b) What is the area of $\triangle \mathrm{DMC}$ ?

$$
\begin{aligned}
& \text { Area of a triangle }=1 / 2 \mathrm{bh} \\
& \text { Area of } \begin{aligned}
\triangle \mathrm{DMC}=(1 / 2) 10 \sqrt{3}(5) & =25 \sqrt{3} \text { square units } \\
& \xlongequal{\bumpeq} 43.3 \text { sq. units }
\end{aligned}
\end{aligned}
$$

4) Given Figure A (rectangle inscribed in a rectangle):
a) What is the perimeter of the outer rectangle?
(Hint: similar triangles \& proportions)

Opposite sides of rectangle are same..
then, we observe that the small triangles are similar to the large triangles!


$$
\frac{7}{1}=\frac{x}{3}
$$



Perimeter $=10+22+10+22$
Figure A
$=62$ units

$$
X=21
$$

b) What is the area of the inner rectangle? (Hint: "encasement" or pythagorean theorem)

Once we get all the side measurements, we can use pythagorean theorem to get remaining sides..

$$
\begin{aligned}
7^{2}+21^{2} & =\mathrm{C}^{2} \\
49+441 & =490 \\
\mathrm{C}_{1} & =7 \sqrt{10} \\
1^{2}+3^{2} & =\mathrm{C} \\
1+9 & =10 \\
\mathrm{C}_{2} & =\sqrt{10}
\end{aligned}
$$

## Alternate Method: "Encasement"

Find area of outer rectangle.. then, subtract the area of the 4 triangles.. The remainder is the inner rectangle..

Area of outer rectangle: $10 \times 22=220$
Area of small triangles: $1 / 2(1)(3)=3 / 2$

Area of large triangles: $1 / 2(7)(21)=147 / 2$
(each)
Area of outer: 220
Area of triangles: $3 / 2+3 / 2+147 / 2+147 / 2$
Middle rectangle: $220-(150)=70$ square units

Figure A


Area of inner rectangle $=\mathrm{C}_{1} \times \mathrm{C}_{2}$

$$
=7 \sqrt{10} \times \sqrt{10}
$$

$$
=70 \text { square units }
$$


5) In a kite, the ratio of the diagonals is $3: 4$

If the area is 150 square feet, what is the length of the larger diagonal?
step 1: draw the figure and label
step 2: express the relevant equations
area of a kite $=\frac{\mathrm{d}_{1} \mathrm{~d}_{2}}{2}$
where $d_{1}$ and $d_{2}$ are the diagonals
step 3: solve

$$
\begin{array}{rlr}
150 \text { sq feet } & =\frac{3 \mathrm{x}(\text { feet }) \cdot 4 \mathrm{x}(\text { feet })}{2} \\
150 & =\frac{12 \mathrm{x}^{2}}{2} & \\
300 & =12 \mathrm{x}^{2} & \mathrm{x}=5 \text { or }-5 \\
\mathrm{x}^{2} & =25 & \begin{array}{l}
\text { (distance cannot be } \\
\text { negative) }
\end{array}
\end{array}
$$


area $=150$ sq feet

Additonal note:

ratio is $15: 20$ or 3:4 and the area is

$$
\frac{15 \times 20}{2}=150 \text { square feet }
$$

Since a kite is symmetric, it has 2 congruent triangles. Therefore, to find the area, simply use area of a triangle: $\frac{1}{2} \mathrm{bh}$

area of each triangle:
$\frac{1}{2} 20$ feet $(7.5$ feet $)=75$ sq. feet
area of kite (i.e. area of both triangles) $=150$ sq. feet
6) A picture frame is shaped as a heptagon. The measure of the top interior angle is $126^{\circ}$. The remaining interior angles are congruent to each other. What is the measure of each remaining interior angle?

Sketch the image and label:

(heptagon has 7 sides $/ 7$ interior angles)

## Write equations:

The sum of the interior angles $=$

$$
(7 \text { (sides })-2) \cdot 180^{\circ}=900^{\circ}
$$

Solve:
Since the top angle is 126 , the remaining 6 angles are $900+126=774^{\circ}$

Since the remaining 6 angles are congruent, each angle is $774 \div 6=129^{\circ}$

Each remaining angle is
$129^{\circ}$
7) What is the perimeter of the triangle?


Use Pythagorean Theorem and algebra to find X :

$$
\begin{gathered}
a^{2}+b^{2}=c^{2} \\
(X+1)^{2}+(X+3)^{2}=(X+5)^{2} \\
\mathrm{X}^{2}+2 \mathrm{X}+1+\mathrm{X}^{2}+6 \mathrm{X}+9=\mathrm{X}^{2}+10 \mathrm{X}+25 \\
\mathrm{X}^{2}-2 \mathrm{X}-15=0 \\
(\mathrm{X}-5)(\mathrm{X}+3)=0 \\
\mathrm{X}=-3 \text { or } 5
\end{gathered}
$$

Since length cannot be negative, we can eliminate $\mathrm{X}=-3$
$X=5$, so the lengths of the triangle are $6,8,10$.
The perimeter is 24

8) Given: Diameter $\overline{\mathrm{AD}}=18$

Tangent segment is 40
Find: the length of $\overline{\mathrm{AB}}$

Method 1: Utilize the secant - tangent theorem


$$
\begin{aligned}
& 40^{2}=(A B)(A B+18) \\
& A B^{2}+18 B-1600=0 \\
& (A B+50)(A B-32)=0
\end{aligned}
$$

$\mathrm{AB}=32$ (length AB must be positive)
"Secant-Tangent Theorem": If a tangent and a secant of a circle meet at a point outside the circle, then the product of the external secant and the entire secant equals the tangent squared.
9) Given: $A B C$ is an isosceles triangle inscribed in the circle where $\overline{\mathrm{AB}} \stackrel{\curvearrowleft}{=} \overline{\mathrm{AC}}$

$$
\begin{aligned}
& \overline{\mathrm{AF}}=6 \\
& \overline{\mathrm{ED}}=1
\end{aligned}
$$

Find: a) the radius of the circle
b) the perimeter of the triangle
a) recognize that $\triangle \mathrm{AFE} \sim \triangle \mathrm{ADC}$

Set up the proportion:

$$
\begin{gathered}
\frac{6}{(x+1)}=\frac{x}{12} \\
x^{2}+x=72 \\
(x-8)(x+9)=72 \\
x=8 \text { or }-9
\end{gathered}
$$

(-9 is extraneous)
b) Since $x=8$, the length of $A D$ is 9


Using Pythagorean Theorem, $\mathrm{DC}=\sqrt{63}$
So, perimeter of ABC is $12+12+2 \sqrt{63}=24+6 \sqrt{7}$


## More Topics....

## Triangle Characteristics

1) What are the restrictions of $x$ ?

$$
\begin{aligned}
& m \angle \mathrm{~A}>m \angle \mathrm{~B} \\
& \text { Since } \angle A>\angle B \text {, } \\
& \overline{\mathrm{BC}}>\overline{\mathrm{AC}} \\
& (18-x)>(3 x+30) \\
& -12>4 x \\
& x<-3
\end{aligned}
$$



Also, since a side cannot be less than or equal to zero,

| $\overline{\mathrm{BC}}$ | $18-\mathrm{x}>0$ | $\mathrm{x}<18$ |
| :--- | :--- | :--- |
| $\overline{\mathrm{AC}}$ | $3 \mathrm{x}+30>0$ | $\mathrm{x}>-10$ |

Therefore, the restrictions for x are $-10<\mathrm{x}<-3$
2) If the perimeter is less than 45 , which side is the base?


If 10 is the base: $\quad x+7=2 x-8$

$$
x=15
$$

therefore, the legs are 22
(If the legs are 22 , then the perimeter exceeds 45 )

If $2 x-8$ is the base: $x+7=10$

$$
x=3
$$

Therefore, the legs are 10 and the base is -6 (a segment cannot be negative!)


If $x+7$ is the base: $2 x-8=10$

$$
x=9
$$

Therefore, the legs are 10 and the base is 16

The base is $\overline{\mathrm{TV}}=16$

Write an equation that describes the set of points equidistant from both $(-1,4)$ and $(5,8)$.

## Solution



Step 1: Graph and apply Geometric theorem

$$
\begin{aligned}
& \text { Perpendicular Bisector Theorem: } \begin{array}{l}
\text { The perpendicular bisector of a line segment } \\
\text { is the locus of all points that equidistant from } \\
\text { the endpoints }
\end{array}
\end{aligned}
$$

Step 2: Establish strategy and lists formulas or variables

To find the equation of a line, we need the slope and a point.
The bisector is the midpoint of $(-1,4)$ and $(5,8)$
The slope of a perpendicular segment is the opposite reciprocal.

any point on the perpendicular bisector is equidistant from both points!

Step 3: Solve

The midpoint of $(5,8)$ and $(-1,4)$

$$
\begin{aligned}
\text { midpoint formula: } & \left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
& \left(\frac{-1+5}{2}, \frac{4+8}{2}\right)=(2,6)
\end{aligned}
$$

The slope of segment joining $(5,8)$ and $(-1,4)$

$$
\text { slope }=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}
$$

$$
\frac{8-4}{5-(-1)}=\frac{4}{6}=\frac{2}{3}
$$

Therefore, the slope of the perpendicular line is $\frac{-3}{2}$

$$
\begin{aligned}
& \text { Equation of a line: } y-y_{1}=m\left(x-x_{1}\right) \\
& \text { (pt. slope form) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { slope } m=\frac{-3}{2} \text { through point } \\
& \qquad \begin{array}{l}
(2,6) \\
\qquad y-6=\frac{-3}{2}(x-2)
\end{array}
\end{aligned}
$$

Step 4: Quick check

Pick a random point on the line. then, see if it is equidistant from $(-1,4)$ and $(5,8)$

$$
\text { If } x=8, \quad y-6=\frac{-3}{2}(8-2)
$$

then $y=-3$

Let's test (8, -3)
distance formula: $d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$
distance between $(8,-3)$ and $(-1,4)$

$$
d=\sqrt{(8-(-1))^{2}+(-3-4)^{2}}=\sqrt{130}
$$

distance between $(8,-3)$ and $(5,8)$

$$
d=\sqrt{(8-5)^{2}+(-3-8)^{2}}=\sqrt{130}
$$

Thanks for visiting. (Hope it helped!)
If you have questions, suggestions, or requests, contact us.
Cheers


Also, at Facebook, Google+, Pinterest, and TeachersPayTeachers

## One more question....

Oscar the dog leaves home and walks 8 miles due East.
Then, he turns and walks another 8 miles Northeast.
And, then, he turns and walks due East 8 miles more.
How far from home is Oscar the dog?
(8 miles due East; 8 miles Northeast; 8 miles due East)
How far from home is Oscar the dog?


SOLUTION ON NEXT PAGE $-\rightarrow$

Oscar the dog leaves home and walks 8 miles due East.
then, he turns and continues 8 miles NorthEast.
And, then, he turns and goes 8 miles further due East...

How far from home is Oscar?

recognize 45-45-90 right triangle, properties of rectangles.....


8

Use Pythagorean Theorem to get full length....


$$
\begin{gathered}
(16+4 / \sqrt{2})^{2}+(4 \sqrt{2})^{2}=(\text { distance })^{2} \\
256+128 / \sqrt{2}+32+32=(\text { distance })^{2}
\end{gathered}
$$

$$
320+128 \sqrt{2}=(\text { distance })^{2}
$$

distance $\approx 22.38$ miles

