Periodic Trig Functions II: Cosine

 Practice Exercises (with Solutions)

Topics include period, amplitude, phase shift, graphing, maximum and minimum, vertical shift, and more.

Cosine Function Practice

1) Graph the following function: $4 \cos \left(x-\frac{\pi}{2}\right)+3$

2) Identify the following cosine functions:
A)

B)

Cosine Function Practice

3) Graph the following Cosine Functions. Then, use the given points to check your answers algebraically and graphically.
A) $y=-5 \cos x+3$

$$
\text { Check: } \begin{aligned}
\mathrm{x} & =\pi \\
\mathrm{x} & =\frac{3 \pi}{2}
\end{aligned}
$$

B) $y=\cos \left(2 x+\frac{\pi}{2}\right)$

Check: $\quad \mathrm{x}=\frac{\pi}{4}$
$\mathrm{x}=\pi$
C) $y=2|\cos \ominus|$

Check: $\ominus=90^{\circ}$

$$
\ominus=180^{\circ}
$$

Cosine Function Practice

4) For the graph $y=\cos x+3$,
A) Domain:
B) Range:
C) x-intercepts:
D) y-intercept:
***Challenge:
5) What is the cosine equation?

Period: 3
Amplitude: $\frac{\pi}{2}$

Vertical shift: none
Horizontal shift: none

Sketch the graph...
maximum $(0,10)$ and minimum $(2 \pi, 0)$

maximum $(\Pi, 4)$ and minimum $(0,-2)$
$\operatorname{maximum}\left(\frac{\pi^{-}}{4}, 8\right)$ and minimum $\left(\frac{\pi^{-}}{2}, 2\right)$

maximum $(2,22)$ and minimum $(8,14)$

Solutions $-\rightarrow$

1) Graph the following function: $4 \cos \left(x-\frac{\pi}{2}\right)+3$

2) Identify the following cosine functions:

B)

$$
\begin{aligned}
y= & A \cos B(x-C)+D \\
& 4 \cos \left(x-\frac{\pi}{2}\right)+3
\end{aligned}
$$

Amplitude $(\mathrm{A})=4$
Period $(2 \pi / B)=2 \pi / 1=2 \pi$
Horizontal shift $(\mathrm{C})=\frac{\pi}{2}$ to the right
Vertical shift (D) $=3$ units UP
The middle of the function will be at $\mathrm{y}=3$
The range will be from 7 (max) to -1 (min)..
(cosine starts at the max, goes down through the middle to the bottom.. then, goes back up)

Steps: 1) Identify the center.. $\max : 5$ min: -1
$\mathrm{D}=2 \quad$ midpoint is $\mathrm{y}=2$ vertical shift: up 2
2) Find the amplitude.. The vertical span of the wave is from
$\mathrm{A}=3 \quad 5$ to $-1 .$. So, the amplitude is $1 / 2$ the range.. $1 / 2$ of 6 is 3
3) Horizontal shift..
$\mathrm{C}=-90^{\circ} \begin{aligned} & \text { Since the maximum begins at } 90 \text { degrees, } \\ & \text { there is a horizontal shift of } 90 \text { to the right.. }\end{aligned}$
4) Period..
$B=1 \quad$ the length of 1 cycle is 360 degrees..

The middle of the range is $4 \ldots$
Vertical shift: UP $4 \quad D=4$
The range goes from 3 to 5,
so the amplitude is $1 \quad \mathrm{~A}=1$
At $x=0$, the function is at its max..
There is no horizontal shift $\mathrm{C}=0$
One cycle has a length of π.
so, $B=\frac{2 \pi}{\pi}=2$
3) Graph the following Cosine Functions. Then, use the given points to check your answers algebraically and graphically.
A) $\mathrm{y}=-5 \cos \mathrm{x}+3 \quad \mathrm{y}=\mathrm{A} \cos \mathrm{B}(\mathrm{x}-\mathrm{C})+\mathrm{D}$

$$
\begin{aligned}
& \text { Check: } x=\pi \\
& \qquad x=\frac{3 \pi}{2} \\
& \text { At } x=\pi \\
& y=-5 \cos (\pi)+3 \\
& =-5(-1)+3=8 \\
& \text { At } x=\frac{3 \pi}{2} \\
& y=-5 \cos \left(\frac{3 \pi}{2}\right)+3 \\
& =-5(0)+3=3
\end{aligned}
$$

B) $y=\cos \left(2 x+\frac{\pi}{2}\right) \quad$ (change to standard form) $y=\cos 2\left(x+\frac{\pi}{4}\right)$

4) For the graph $y=\cos x+3$,
A) Domain: all real numbers... (any number can go into x)
B) Range: $[2,4] \quad$ center is 3 and amplitude is 1
C) x-intercepts: none

*** Challenge:
5) What is the cosine equation?

$$
\begin{array}{ll}
\text { Period: } 3 & \text { Vertical shift: none } \\
\text { Amplitude: } \frac{\pi}{2} & \text { Horizontal shift: none }
\end{array}
$$

Sketch the graph...

$$
\begin{aligned}
& y=A \cos B(x-C)+D \\
& B=\frac{2 T T}{3}
\end{aligned}
$$

$$
\mathrm{y}=\frac{\Pi T}{2} \cos \frac{2 T T}{3}(\mathrm{x})
$$

$$
\frac{T T}{2}=1.57 \text { (approx) }
$$

maximum $(0,10)$ and minimum $(2 \Pi, 0)$

Note: There are many other solutions. For example, suppose the max and min were not in the same cycle....
$E X: y=5 \cos \frac{7}{2} x+5$
midline or axis of wave: $y=5 \quad$ (midpoint between max and min) amplitude: 5
period: 4π (one cycle is \max to \min and \min to \max)
since a relative maximum occurs at $x=0$, we'll use cosine graph with no horizontal shift...

$$
\begin{gathered}
y=5 \cos \frac{1}{2} x+5 \\
\text { also, } y=5 \sin \frac{1}{2}(x+\Pi)+5
\end{gathered}
$$

midline or axis of wave: $\mathrm{y}=1 \quad$ (midpoint between max and min)
amplitude: 3 (distance from axis of wave to an extreme. OR, $1 / 2$ of distance from max to min) period: $2 \pi{ }^{-1}$ (one cycle is \max to \min and \min to \max)
since a relative minimum occurs at $x=0$, we'll use
a cosine graph with no horizontal (phase) shift...

$$
\begin{aligned}
& y=-3 \cos x+1 \\
& \text { also, } \\
& y=3 \sin \left(x-\frac{\pi}{2}\right)+1
\end{aligned}
$$

maximum $\left(\frac{\pi}{4}, 8\right)$ and minimum $\left(\frac{\pi^{-}}{2}, 2\right)$

$$
\mathrm{y}=\mathrm{A} \cos \mathrm{~B}(\mathrm{x}-\mathrm{C})+\mathrm{D}
$$

A: Amplitude (magnitude)
B: Period
period $=\frac{2 \pi}{B}$
C: Horizontal Shift
D: Vertical Shift
$B=\frac{2 \pi}{\text { period }}$
midline or axis of wave: $\mathrm{y}=5 \quad$ (midpoint between max and min) amplitude: 3 (distance from axis of wave to an extreme. OR, $1 / 2$ of distance from max to min) period: $\frac{\pi}{2}$ (one period is $2 \times(\max$ to $\left.\min)\right)$

For convenience, we'll use the maximum and choose a cosine function with shift $\frac{\pi}{4}$

$$
y=3 \cos 4\left(x-\frac{\pi}{4}\right)+5
$$

maximum $(2,22)$ and minimum $(8,14)$

Suppose we prefer a sine function...

$$
\begin{aligned}
& y=A \sin B(x-C)+D \\
& y=4 \sin \frac{\pi}{6}(x-C)+18
\end{aligned}
$$

then, to find C , substitute either point...

$$
\begin{aligned}
14 & =4 \sin \frac{\pi}{6}(8-\mathrm{C})+18 \\
-1 & =\sin \frac{\pi}{6}(8-\mathrm{C}) \\
\sin ^{-1}(-1) & =\frac{\pi}{6}(8-\mathrm{C}) \\
& -\frac{\pi}{2}
\end{aligned}=\frac{\pi}{6}(8-\mathrm{C}) \quad \mathrm{C}=11.2
$$

midline or axis of wave: $\mathrm{y}=18$ amplitude: 4
period: 12 'B' value is $\frac{2 \pi}{12}=\frac{\pi}{6}$

Thanks for visiting. (Hope it helps!)
If you have questions, suggestions, or requests, let us know. Cheers.

Find more trigonometry materials and comics at the mathplane.com

Also, find us at teacherspayteachers, facebook, google+, and pinterest...

One more function: Identify the transformations. Then, graph:

$$
y=-2 \cos \left(\pi x+\frac{\pi}{2}\right)
$$

Identify the transformations of the following cosine function. Then, graph.

$$
y=-2 \cos \left(\pi x+\frac{\pi}{2}\right)
$$

The " A " value is -2 , so the amplitude is 2
To find the period and phase (horizontal) shift, we must simplify $--->$ put in standard form!

$$
y=A \cos B(x-C)+D
$$

A: Amplitude (magnitude)
B: Period
C: Horizontal Shift
D: Vertical Shift

Amplitude: 2
Period: $\frac{2 \pi}{\mathrm{~B}}=2$
Horizontal shift: $\frac{1}{2}$ to the left
Vertical shift: None

Reflection: Since the "A" value is negative there is reflection over the x-axis

