Absolute Value Graphing Topics

Notes, Examples, and Exercises (with Solutions)

Includes graphing, slope, number lines and distance, tables, solving equations, and more...

Example: |2x + 8| = 4

Solve Algebraically

$$|2x + 8| = 4$$

"split the absolute value"

$$2x + 8 = 4$$
 OR $2x + 8 = -4$

$$2x = -x$$

$$2x = -4$$
 $2x = -12$

$$x = -2$$

$$x = -2$$
 $x = -6$

Check:
$$|2(-2) + 8| = 4$$
 Check: $|2(-6) + 8| = 4$

Check:
$$|2(-6) + 8| = 4$$

$$|-4| = 4$$

2 SOLUTIONS: (-2, 4) and (-6, 4)

Example: |x + 5| = 2x

Solve Algebraically

$$|x+5| = 2x$$

"split the absolute value"

$$x + 5 = 2x$$

$$x + 5 = 2x$$
 OR $x + 5 = -(2x)$

$$5 = x$$

$$3x = -5$$

$$x = -5/3$$

Check:
$$|(5) + 5| = 2(5)$$

Check:
$$|(-5/3) + 5| = 2(-5/3)$$

1 SOLUTION: (5, 10)

Example: |x + 3| = x - 7

Solve Algebraically

$$|x+3| = x-7$$

"split the absolute value"

$$y + 3 = y - 7$$

$$x + 3 = x - 7$$
 OR $x + 3 = -(x - 7)$

$$3 \neq -7$$

$$x+3 = -x+7$$

$$2x = 4$$

$$x = 2$$

But, if you check:

NO SOLUTIONS

$$|(2) + 3| = (2) - 7$$

5 \neq -5

Solve Graphically

Graphing Absolute Values on the Coordinate Plane

METHOD 1: Using the Parent Function

Example:
$$y = |x - 2| + 4$$

parent function: y = |x|

horizontal shift (c): 2 units to the right

vertical shift (d): 4 units up

domain: all real numbers range: $y \ge 4$

Example:
$$y = -|3x - 3| + 5$$

**first, rewrite the equation

$$y = -|3(x - 1)| + 5$$

horizontal shift (c): 1 unit to the right

vertical shift (d): 5 units up

reflected over the x-axis

"compression" (b): 1/3 of the width

domain: all real numbers range: $y \le 5$

METHOD 2: Recognizing the Vertex and Slope

Example:
$$y = 2|x - 6| + 4$$

vertex: (6, 4)

slope: a = 2

so, left of the vertex: -2

right of the vertex: 2

Example:
$$y = -|2x + 10| + 3$$

rewrite:
$$y = -2|x + 5| + 3$$

vertex: (-5, 3)

slope: a = -2

so, left of the vertex: 2

right of the vertex: -2

parent function: y = |x|

function: f(x)

$$y = afb(x - c) + d$$

a: vertical stretch/dilation

b: horizontal compression

c: horizontal shift

d: vertical shift

positive 'a' value, then graph opens up... negative 'a' value, then graph opens down...

$$y = a|x - h| + k$$

slope: a vertex: (h, k)

(To check your graph, just test a few points...)

Exercises-→

Solve algebraically and graphically

1)
$$|3x + 4| = -x + 8$$

2)
$$|x + 7| - 4 = -2x$$

3)
$$-2|x+5| = +7$$

1)

2)

$$f(x) =$$

 $g(x) = \begin{cases} & & \\ & & \end{cases}$

3)

4)

$$h(x) =$$

p(x) =

mathplane.com

- 1) y = 3|x + 2| + 4
- 2) y = 5 |x + 7|

3) y = |3x| + 4

III. Write each absolute value inequality to describe the phrase. Then, graph on the number line.

Absolute Value and Distance

1) all real numbers where "the distance from 5 is at most 12 units away"

2) all real numbers where "the distance from -6 is over 9 units away"

3) all real numbers "within 11 units of 13"

 ${
m IV.}\,\,$ Describe each number line graph/compound inequality with an absolute value equation/inequality.

1)

2

3)

 $4) \qquad x < 9 \text{ and } x > 0$

V. Interpreting tables of values

- a) g(x) is an absolute function. Fill in the blanks.
- b) what is the minimum value of g(x)?
- c) what is the equation of the function?

X	f(x)
-5	
-4	-7
-3	
-2	-1
-1	
0	-1
1	
2	

- a) If this an absolute value function, fill in the rest of the table.
- b) What is x when f(x) = -10?
- c) Write the equation.

SOLUTIONS-→

Absolute value equations and the coordinate plane

Solve algebraically and graphically

1) |3x + 4| = -x + 8

Algebraically

"Split the absolute value"

$$3x + 4 = -x + 8$$
 OR $3x + 4 = -(-x + 8)$
 $4x = 4$ $3x + 4 = x - 8$
 $x = 1$ $x = -6$

Check for extraneous answers

If
$$x = 1$$
: If $x = -6$

$$|3(1) + 4| = -(1) + 8$$
 $|3(-6) + 4| = -(-6) + 8$
 $|7| = 7$ $|-14| = 14$

TWO SOLUTIONS: x = 1, -6

2) |x + 7| - 4 = -2x

Algebraically

"Isolate the absolute value"

$$|x + 7| = -2x + 4$$

"Split the absolute value"

$$x + 7 = -2x + 4$$
 OR $x + 7 = +(-2x + 4)$

$$3x = -3$$

$$x + 7 = 2x - 4$$

$$x = 11$$

check for extraneous solutions

if x = -1:

if
$$x = 11$$
:

$$|(-1) + 7| = -2(-1) + 4$$
 $|(11) + 7| - 4 = -2(11)$

$$|(11) + 7| - 4 = -2(11)$$

$$|6| = 6$$

1 SOLUTION: x = -1

3) -2|x+5| = -7

Algebraically

"Isolate the absolute value"

$$|x + 5| = \frac{-7}{-2}$$

"Split the absolute value"

$$x + 5 = 7/2$$
 OR $x + 5 = -7/2$

$$x = -3/2$$

$$x = -17/2$$

check for extraneous solutions

if
$$x = -3/2$$
:

if
$$x = -17/2$$
:

$$-2|(-3/2) + 5| = -7$$

$$-2|(-17/2) + 5| = -7$$

$$-2|-7/2| = -7$$

2 SOLUTIONS: x = -3/2, -17/2

Intercepts at

(1, 7) and (-6, 14)

Intercept at (-1, 2)

$$y = |x + 7| - 4$$

NOTE: If you graphed y = |x + 7| and y = -2x + 4, the

intersection would occur at x = -1(-1, 6)

 $y = \pm 2x$

Intercepts at

(-3/2, -7) and (-17/2, -7)

1)

$$f(\mathbf{x}) = \int |\mathbf{x} + 2| + 2 \quad \text{if} \quad \mathbf{x} < 3$$

2)

$$g(\mathbf{x}) = \begin{cases} -3|\mathbf{x} + 6| + 3 & \text{in the interval} \quad (-8, -5] \\ \frac{1}{2}|\mathbf{x} - 3| - 8 & \text{in the interval} \quad [-5, \infty) \end{cases}$$

3)

$$h(x) = \begin{cases} \frac{5}{2}|x+3| - 6 & \text{if } -7 < x \le \\ \frac{2}{5}|x-4| - 3 & \text{if } x > -1 \end{cases}$$

4)

$$p(\mathbf{x}) = \begin{cases} -|\mathbf{x} + 3| + 5 & \text{in the interval} \quad (-\infty, 0) \\ -|\mathbf{x} - 5| + 7 & \text{in the interval} \quad (0, \infty) \end{cases}$$

mathplane.com

1)
$$y = 3|x + 2| + 4$$

slope will be -3 on the left and +3 on the right going through the point (-2, 4), we can determine the lines

$$\begin{cases} -3x + (-2) & \text{if } x < -2 \\ 3x + 10 & \text{if } x \ge -2 \end{cases}$$

2)
$$y = 5 - |x + 7|$$

$$y = -1 |x + 7| + 5$$
vertex is at (-7, 5)
slope is -1 for $x \le -7$
1 for $x > -7$

$$\begin{cases} -x-2 & \text{if } x \le -7 \\ x+12 & \text{if } x > -7 \end{cases}$$

3)
$$y = |3x| + 4$$

the 3 inside the absolute value behaves the same as if it were outside the absolute value...

slope is -3 when
$$x < 0$$
 and slope is -3 when $x > 0$

III. Write each absolute value inequality to describe the phrase . Then, graph on the number line.

Absolute Value and Distance

1) all real numbers where "the distance from 5 is at most 12 units away"

$$|x - 5| \le 12$$

2) all real numbers where "the distance from -6 is over 9 units away"

$$|x - (-6)| > 9$$

3) all real numbers "within 11 units of 13"

$$|x - 13| \le 11$$

IV. Describe each number line graph/compound inequality with an absolute value equation/inequality.

SOLUTIONS

1)

- 1) center (i.e. midpoint of boundaries) $\frac{11+29}{2} = 20$
- 2) distance to each boundary is 9 units
- 3) the set of points is less than 9 units...

$$|x - 20| < 9$$

3)

1) center of boundaries is -8

-21

- 2) distance to each boundary is 13 units
- 3) set of all points is great than or equal to 13 units...

$$|x - (-8)| \ge 13$$

V. Interpreting tables of values

X	g(x)
-5	5
-3	1
-1	-3
.0	-5
1	-7
5	-5
5	1
9	9

- a) g(x) is an absolute function. Fill in the blanks.
 (recognize the slopes are -2 and 2)
- b) what is the minimum value of g(x)? vertex is (1, -7) ----> minimum is -7
- c) what is the equation of the function?

$$2|x-1| - 7$$

midpoint is
$$\frac{-9+15}{2} = 3$$

distance to each boundary is 12

$$|x+3| = 12$$

"all numbers that are 12 units from 3"

4) x < 9 and x > 0

- 1) center of boundaries: 4.5
- 2) distance to each boundary (from center): 4.5
- 3) all points are less than the distance to boundaries

$$|x - 4.5| < 4.5$$

X	f(x)
-5	-10
-4	-7
-3	-4
-2	-1
-1	2
0	-1
1	-4
2	-7

a) If this an absolute value function, fill in the rest of the table.

slopes are 3 and -3... vertex is at
$$x = -1$$

- b) What is x when f(x) = -10? x = -5 or 3
- c) Write the equation. -3|x+1|+2

Thanks for visiting. (Hope it helped!)

If you have questions, suggestions, or requests, let us know.

Cheers

Also, at Facebook, Google+, TeachersPayTeachers, TES, and Pinterest...