$$
2-0-1-5
$$

Numbers Puzzle

Using 2, 0, 1, 5, and any combination of math symbols/operations, write equations that compute to every number between 1 and 25 .

Note: Each digit must be used exactly once!

Examples: $\quad \begin{aligned} 0 & =0 \times 215 \\ & =52^{0}-1\end{aligned}$

1

2

3

4

5

6

7

8

9

10

11

12

2015

Part 2: Challenge

Using 2, $0,1,5$, and any combination of math symbols/operations, write equations that compute to every number between 26 and 50 .

Note: Each digit must be used exactly once!

Examples: $\quad \begin{aligned} 0 & =0 \times 215 \\ & =52^{0}-1\end{aligned}$

26

27

28

29

30

31

32
$33=$

34

35

36

37

2-0-1-5 Hints (Useful math operations/symbols)

factorials:
$0!=1$
$3!=3 \times 2 \times 1=6$
greatest integer function (floor function)

$$
\lfloor 5.6\rfloor=5
$$

least integer function (ceiling function)

$$
\lceil 5.6\rceil=6
$$

square root:

$$
\sqrt{(5-1)}=2
$$

Using 2, 0, 1, 5, and any combination of math symbols/operations, write equations that compute to every number between 1 and 25.

$$
\text { mathplane solution: } 6 \text { minutes, } 34 \text { seconds }
$$

Note: Each digit must be used exactly once!

Examples:	$=0 \times 215$				
	$=52^{0}-1$		13	$15-2+0$	
1	$(0 \times 25)+1$		14	20-5-1	
2	$2+(0 \times 15)$		15	$25-10$	
3	$(2+1)-(0 \times 5)$		16	$20-5+1$	$15+2^{0}$
4	$5-2+1+0$	$\frac{10}{5}+2$	17	$10+2+5$	
5	$\frac{20}{5}+1$		18	$15+2+0$!	
6	$(5+1)+(2 \times 0)$	$21^{0}+5$	19	$20-1^{5}$	
7	$5+2+(1 \times 0)$		20	$10+(5 \times 2)$	
8	$5+2+1+0$		21	$21+(5 \times 0)$	
9	$2 \times 5-1+0$		22	$2^{5}-10$	
10	$\frac{10}{2}+5$	$2 \times 5 \times 1+0$	23	$(5-1)!-2^{0}$	
11	$(2 \times 5+1)+0$		24	$25-1+0$	
12	$12+(5 \times 0)$		25	$5^{2}+0 \times 1$	

Part 2: Challenge

Using 2, 0, 1, 5, and any combination of math symbols/operations, write equations that compute to every number between 26 and 50 .

```
Mathplane Solution: }32\mathrm{ minutes
```

Note: Each digit must be used exactly once!

Examples: $0=0 \times 215$

	$=52^{0}-1$			38	$50-12$	
						$5!=120$
26	$5^{2}+1-0$	$21+5+0$	$\frac{50}{2}+1$	39	$5!\div(2+1)-0!$	$120 \div(3)-1$
27	$5^{2}+1+0!$	$0!=1$		40	$5!\div(2+1+0)$	
28	$(15-0!) \times 2$			41	$5!\div(2+1)+0!$	
29	$(2 \times 15)-0!$			42	$52-10$	
30	$15 \times 2+0$			43	$\llbracket \sqrt{5} \times 20 \rrbracket-1$	$\begin{gathered} {[[2.23 \times 20]]-1} \\ {[[44.6]]-1} \\ 44-1 \end{gathered}$
31	$51-20$			44	$(5-1)!+20$	(using greatest integer function)
32	$2 \mathrm{x}(15+0!)$			45	$51-(2!+0!)!$	$\begin{aligned} & 51-(2+1)! \\ & 51-3! \\ & 51-6 \end{aligned}$
33	$2^{5}+1+0$			46	$((5-1)!-0!) \times 2$	$\begin{array}{r} (4!-0!) \times 2 \\ (24-1) \times 2 \\ 23 \times 2 \end{array}$
34	$2^{5}+1+0!$			47	$50-2-1+0$	
35	$20+15$	$5^{2}+10$		48	$50-2^{1}$	
36	$(1+5)^{2}+0$			49	$50-1^{2}$	
37	$(1+5)^{2}+0!$			50	$\frac{5!}{2}-10$	

Thanks for visiting!

If you have questions, suggestions, or requests, let us know.
Best in 2015!

Also, at Facebook, Google+, Pinterest, and TeachersPayTeachers

